Aims of this chapter

- On who is the tax levied?
- Who ultimately bears the tax?
- Tax incidence
 - in partial equilibrium
 - in general equilibrium: the Harberger (1962) approach
 - applications: corporate tax, output tax
- Possible extensions:
 - endogenous factor supplies
 - intersectoral factor mobility
 - dynamics: see Chapter 8: Taxation and Growth
Types of Tax Incidence

- Agent upon whom the tax is levied may not actually bear the tax.

- As the tax may be shifted to other agents.

Different types of tax incidence analysis. Look at effects on:
- Producers, consumers, and suppliers of factor
- Main production factors (e.g. capital and labour)
- Personal income distribution
- Different regions
- Different generations
• Focus on incidence on factors

• Study tax effects in a “neutral fashion”
 – only one tax is changed at a time
 – revenue is recycled in a lump-sum fashion

Tax Incidence in Partial Equilibrium

• Classics had general equilibrium framework

• First half of 20th century: *Alfred Marshall*’s partial equilibrium analysis dominant
 [study markets in isolation]

• Example from Atkinson & Stiglitz (1980, p. 162):
 – crop (say “grapes”) produced with land (that cannot be used for anything else)
 and with labour, L
 – supply of labour perfectly elastic at wage W
production function is \(Y = F (L, \bar{K}) \) where \(Y \) is output (and \(F_L > 0 \geq F_{LL} \))

competitive demand for labour, \(L^D \):

\[
PF_L \left(L^D, \bar{K} \right) = W \quad \iff \quad L^D = \bar{K} l \left(\frac{W}{P} \right)
\]

where \(P \) is the producer price of the good

competitive supply curve:

\[
Y^S = F \left(L^D, \bar{K} \right) = \bar{K} S \left(\frac{W}{P} \right)
\]

demand curve:

\[
Y^D = D \left(P_D, Z \right)
\]

where \(P_D \) is the consumer price of the good and where we assume \(\frac{\partial D}{\partial P_D} < 0 \).

In Figure 6.1 we illustrate the situation on the grape market

initially no tax on grape consumption so \(P_D = P \)
– initial equilibrium is at E_0, equilibrium price is P_0 and equilibrium quantity is Y_0

– rents received by land owners is the area BE_0P_0:

\[
\Pi_0 \equiv P_0Y_0 - \int_0^{Y_0} MC \left(Y^S, W, \bar{K} \right) dY^S \\
= P_0Y_0 - \left[TC \left(Y_0, W, \bar{K} \right) - TC \left(0, W, \bar{K} \right) \right] \\
= P_0Y_0 - TC \left(Y_0, W, \bar{K} \right)
\]

where TC is total cost and MC is marginal cost:

\[
TC \left(Y^S, W, \bar{K} \right) \equiv WL^D \\
MC \left(Y^S, W, \bar{K} \right) \equiv \frac{\partial WL^D \left(Y^S \right)}{\partial Y^S}
\]

– when the tax is introduced, the demand price equals $P_D = P + t_G$ so that the demand curve shifts downwards.
– effects:

- producer price falls from P_0 to P_1
- demand price rises from P_0 to P_{D1}
- wage unchanged by assumption
- landowner rents decline from $BE_0 P_0$ to $BE_1 P_1$
- so tax is borne by both consumers and landowners [division of burden depends on the elasticities]!
• Limitations of partial equilibrium analysis:
 – extreme assumption on the *supply side*: factor supplies are either totally elastic [labour] or totally inelastic [land]
 – *demand side*: change in demand for grapes may affect other sectors and may thus affect factor demands
 – interaction demand-supply: change in factor incomes may affect demand patterns

• The classic analysis by Arnold Harberger (1962) made a strong case for using general equilibrium models.
Figure 6.1: Tax Incidence in Partial Equilibrium
Tax Incidence in General Equilibrium

- Key contributions by Harberger (1962 *JPE*) and Jones (1965 *JPE*)
- Also much used in the pure theory of international trade and in two-sector growth theory

Steps to be taken:
- outline basic model (without taxes) and study its key properties
- **digression** on duality theory: the cost function and input demands
- develop geometric illustration of the model
- introduce taxes into the model and study their effects
- discuss limitations/generalizations
Basic Two-Sector Model

- Minimum general equilibrium model has:
 - two sectors: the X-sector and the Y-sector (outputs X and Y; prices P_X and P_Y, respectively)
 - two factors of production: capital and labour (K_i and L_i, $i \in (X, Y)$)

- Further features:
 - static model
 - fixed total supplies of capital and labour (\bar{K} and \bar{L})
 - perfect intersectoral mobility (common rental rates W and R)
 - perfect competition in both sectors
 - constant returns to scale in both sectors
 - full employment of factors
Digression on the Cost Function

- Cost Function: yet another very useful tool from duality theory which will be used time and again [see the book for details]

- Cost function is analogous to the Expenditure Function (see Chapter 2).

- Focus on single-good, two-factor case for exposition purposes: Z_1 and Z_2 are the factors, W_1 and W_2 are their respective rental rates, and Y is the output.

- **Cost function**: minimum level of factor costs needed to produce a given level of output, say Y_0, when faced with the rental rates W_1 and W_2:

$$C(W_1, W_2, Y_0) \equiv \min_{\{Z_1, Z_2\}} W_1 Z_1 + W_2 Z_2 \quad \text{subject to:} \quad F(Z_1, Z_2) = Y_0$$

- $F(Z_1, Z_2)$ is the production function
• Key properties of the cost function:

- $C(W_1, W_2, Y_0)$ is homogeneous of degree one in rental rates (W_1 and W_2)
- $C(W_1, W_2, Y_0)$ is concave in rental rates
- $C(W_1, W_2, Y_0)$ is increasing in each W_i
- $C(W_1, W_2, Y_0)$ is continuous in W_1 and W_2
- if $F(Z_1, Z_2)$ features CRTS then the cost function is linear in Y_0 and can be written as $C(\cdot) = c(W_1, W_2)Y_0$ (where $c(W_1, W_2)$ is unit-cost)
- the Allen-Uzawa substitution elasticity between factors i and j is defined as:

$$\sigma_{ij} \equiv \frac{C(\cdot)C_{ij}(\cdot)}{C_i(\cdot)C_j(\cdot)}, \quad i \neq j$$
• Conditional factor demand curves are given by Shephard’s Lemma:

\[Z_i (W_1, W_2, Y_0) = \frac{\partial C (W_1, W_2, Y_0)}{\partial W_i} \]

(SL1)

• Properties of the conditional factor demands:

– \(Z_i (W_1, W_2, Y_0) \) is decreasing in \(W_i \)

– \(Z_i (W_1, W_2, Y_0) \) is homogeneous of degree zero in rental rates \((W_1 \text{ and } W_2) \)

– if \(F (Z_1, Z_2) \) features CRTS then, since \(C (\cdot) = c (W_1, W_2) Y_0 \), the conditional factor demand simplify to:

\[Z_i (W_1, W_2, Y_0) = \frac{\partial c (W_1, W_2)}{\partial W_i} Y_0 \]

(SL2)
Back to the Model

• Approach production sectors via the dual approach (i.e. via the cost function)

• Cost function in the sectors are linear in respective outputs:

\[C^x \equiv c^x (W, R) X \]
\[C^y \equiv c^y (W, R) Y \]

so marginal cost in sector \(i \) is \(c^i \)

• Note: \(c^i \) is also unit-cost, linear homogeneous in \(W \) and \(R \)
• Conditional factor demands:

\[L_X = \frac{\partial c^x (W, R)}{\partial W} X \equiv c^x_W X \]

\[K_X = \frac{\partial c^x (W, R)}{\partial R} X \equiv c^x_R X \]

\[L_Y = \frac{\partial c^y (W, R)}{\partial W} Y \equiv c^y_W Y \]

\[K_Y = \frac{\partial c^y (W, R)}{\partial R} Y \equiv c^y_R Y \]
• Full employment in both factor markets:

\[c^x_W X + c^y_W Y = \bar{L} \]
\[c^x_R X + c^y_R Y = \bar{K} \]

where the \(c^i_j \) \(i \in (x, y) \) and \(j \in (W, R) \) are input coefficients depending in general on \(W \) and \(R \).

• Perfectly competitive firms in both sectors equate price to marginal cost:

\[P_X = c^x (W, R) \]
\[P_Y = c^y (W, R) \]
Features of the goods demand side:

- representative agent model: single utility function, $U(X, Y)$, subject to aggregate budget restriction, $M = P_X X + P_Y Y$, where M is aggregate income. Interesting first-order condition: $U_X / U_Y = P_X / P_Y$

- homothetic preferences: linear Engel curves so that Marshallian demand can be written as follows:

$$X = d^x (P_X, P_Y) M$$
$$Y = d^y (P_X, P_Y) M$$

where $d^x (\cdot)$ and $d^y (\cdot)$ are homogeneous of degree minus one in P_X and P_Y

- definition of aggregate income:

$$M = W \bar{L} + R \bar{K}$$
Summary of the full general equilibrium model:

\[\bar{L} = c^x_W (W, R) X + c^y_W (W, R) Y \]
\[\bar{K} = c^x_R (W, R) X + c^y_R (W, R) Y \]
\[P_X = c^x (W, R) \]
\[P_Y = c^y (W, R) \]
\[X = d^x (P_X, P_Y) [W \bar{L} + R \bar{K}] \]
\[Y = d^y (P_X, P_Y) [W \bar{L} + R \bar{K}] \]

- endogenous: \(X, Y, P_X, P_Y, W, \) and \(R \)
- exogenous: \(\bar{K} \) and \(\bar{L} \)

- **Law of Walras**: when all but one markets are in equilibrium then so is the last market, i.e. one equation is redundant and we can only determine relative prices.
• Digression on Walras’ Law:

– (5) and (6) imply that:

\[P_X X + P_Y Y = W \bar{L} + R \bar{K} \]

– insert (1) and (2):

\[
\begin{align*}
P_X X + P_Y Y &= W \left[c_W^x X + c_W^y Y \right] + R \left[c_R^x X + c_R^y Y \right] \\
&= \left[W c_W^x + R c_R^x \right] X + \left[W c_W^y + R c_R^y \right] Y
\end{align*}
\]

– but [by linear homogeneity] we have \(c^x = W c_W^x + R c_R^x \) and \(c^y = W c_W^y + R c_R^y \) so this means:

\[
\begin{align*}
P_X X + P_Y Y &= c^x X + c^y Y \\
(P_X - c^x) X &= -(P_Y - c^y) Y
\end{align*}
\]

– so if (3) holds so does (4) and vice versa. Q.E.D.
Qualitative Analysis of the Model

- The model in levels is given in (1)-(6)

- We adopt the usual strategy of log-linearizing the model.

- Show some of the details of the derivation [which is non-trivial]

- Log-linearized demand equations [(5)-(6)].
 - recall key first-order condition for utility maximum:
 \[
 \frac{U_X}{U_Y} = \frac{P_X}{P_Y} \tag{A}
 \]
 - recall (from Chapter 2) that for homothetic preferences the elasticity of substitution is defined as:
 \[
 \sigma_D \equiv \frac{d \log \left(\frac{Y}{X} \right)}{d \log \left(\frac{U_X}{U_Y} \right)} > 0 \tag{B}
 \]
– it follows from (A) and (B) that:

\[d \log \left(\frac{U_X}{U_Y} \right) = d \log \left(\frac{P_X}{P_Y} \right) = \frac{1}{\sigma_D} d \log \left(\frac{Y}{X} \right) \]

(C)

or:

\[\tilde{X} - \tilde{Y} = -\sigma_D \left[\tilde{P}_X - \tilde{P}_Y \right] \]

(M1)

with:

\[\tilde{X} \equiv \frac{dX}{X}, \quad \tilde{Y} \equiv \frac{dY}{Y} \]

\[\tilde{P}_X \equiv \frac{dP_X}{P_X}, \quad \tilde{P}_Y \equiv \frac{dP_Y}{P_Y} \]

– **Note**: more general (non-homothetic) case done by A&K (p. 168).
• Log-linearized price equations [(3)-(4)].

– totally differentiate equation (3):

\[
\begin{align*}
\frac{dP_X}{P_X} &= \frac{Wc^x_w}{c^x} \frac{dW}{W} + \frac{Rc^x_R}{c^x} \frac{dR}{R} \\
\tilde{P}_X &= \theta_{LX} \tilde{W} + \theta_{KX} \tilde{R}
\end{align*}
\]

(A)

with:

\[
\begin{align*}
\tilde{W} & \equiv \frac{dW}{W}, \quad \tilde{R} \equiv \frac{dR}{R} \\
\theta_{LX} & \equiv \frac{Wc^x_w}{c^x}, \quad \theta_{KX} \equiv \frac{Rc^x_R}{c^x} = 1 - \theta_{LX}
\end{align*}
\]

where \(\theta_{LX} \) and \(\theta_{KX} \) are the factor shares of, respectively, labour and capital in the \(X \)-sector.
– totally differentiating equation (4) in a similar fashion yields:

\[\tilde{P}_Y = \theta_{LY} \tilde{W} + \theta_{KY} \tilde{R} \]

(B)

with:

\[\theta_{LY} \equiv \frac{W_{cy}}{c_y}, \quad \theta_{KY} \equiv \frac{R_{cy}}{c_y} = 1 - \theta_{LY} \]

– deducting (B) from (A) yields:

\[
\tilde{P}_X - \tilde{P}_Y = \theta_{LX} \tilde{W} + \theta_{KX} \tilde{R} - \left[\theta_{LY} \tilde{W} + \theta_{KY} \tilde{R} \right]
\]

\[
= \theta_{LX} \tilde{W} + (1 - \theta_{LX}) \tilde{R} - \left[\theta_{LY} \tilde{W} + (1 - \theta_{LY}) \tilde{R} \right]
\]

\[
= \theta^* \left[\tilde{W} - \tilde{R} \right]
\]

(M2)
with:

$$\theta^* \equiv \theta_{LX} - \theta_{LY}$$

$$= \theta_{KY} - \theta_{KX}$$

– **Note:** θ^* measures relative factor intensity in the two industries. According to (M2), if the X-industry is relatively labour intensive ($\theta_{LX} > \theta_{LY}$) then a rise in the relative price of labour (W/R) results in a rise in the relative price of good X (P_X/P_Y)
• Log-linearized factor market clearing equations [(1)-(2)].

 – totally differentiate equation (1), taking into account that \(c^x_W \) and \(c^y_W \) depend on \(W/R \)

\[
\begin{align*}
 d\tilde{L} & = c^x_W dX + X dc^x_W + c^y_W dY + Y dc^y_W \\
 \frac{d\bar{L}}{\bar{L}} & = \frac{X c^x_W}{\bar{L}} \frac{dX}{X} + \frac{c^x_W X}{\bar{L}} \frac{dc^x_W}{c^x_W} + \frac{c^y_W Y}{\bar{L}} \frac{dY}{Y} + \frac{c^y_W Y}{\bar{L}} \frac{dc^y_W}{c^y_W} \\
 \tilde{L} & = \lambda_{LX} \left(\tilde{X} + \tilde{c}^x_W \right) + \lambda_{LY} \left(\tilde{Y} + \tilde{c}^y_W \right)
\end{align*}
\]

(M3)

with:

\[
\begin{align*}
 \tilde{c}^x_W & \equiv \frac{dc^x_W}{c^x_W}, \quad \tilde{c}^y_W \equiv \frac{dc^y_W}{c^y_W}, \quad \tilde{L} \equiv \frac{d\bar{L}}{\bar{L}} \\
 \lambda_{LX} & \equiv \frac{L_X}{\bar{L}} = \frac{X c^x_W}{\bar{L}}, \quad \lambda_{LY} \equiv \frac{L_Y}{\bar{L}} = \frac{Y c^y_W}{\bar{L}} = 1 - \lambda_{LX}
\end{align*}
\]

where \(\lambda_{LX} \) and \(\lambda_{LY} \) are the shares of the labour force employed in, respectively, the \(X \) and the \(Y \) sector.
– total differentiation of (2) yields in a similar fashion:

\[
\tilde{K} = \lambda_{KX} \left(\tilde{X} + \tilde{c}^x_R \right) + \lambda_{KY} \left(\tilde{Y} + \tilde{c}^y_R \right) \tag{M4}
\]

with:

\[
\tilde{c}^x_R \equiv \frac{d c^x_R}{c^x_R}, \quad \tilde{c}^y_R \equiv \frac{d c^y_R}{c^y_R}, \quad \tilde{K} \equiv \frac{d \bar{K}}{\bar{K}}
\]

\[
\lambda_{KX} \equiv \frac{K_X}{\bar{K}} = \frac{X c^x_R}{\bar{K}}, \quad \lambda_{KY} \equiv \frac{K_Y}{\bar{K}} = \frac{Y c^y_R}{\bar{K}} = 1 - \lambda_{KX}
\]

– **Note:** for the special case of *Leontief technologies* (zero substitutability in production) all \(c^i_j \) coefficients would be fixed. The log-linearized model is then given by (M1)-(M4). We occasionally look at the Leontief case to build intuition. In the general case we must look at......
• Log-linearized production coefficients \([c^i_j \text{ for } i \in (x, y) \text{ and } j \in (W, R)]\)

 – totally differentiate \(c^x_W (W, R):\)

 \[
 \begin{align*}
 dc^x_W &= c^x_{WW} dW + c^x_{WR} dR \\
 \frac{dc^x_W}{c^x_W} &= \frac{W c^x_{WW}}{c^x_W} \frac{dW}{W} + \frac{R c^x_{WR}}{c^x_W} \frac{dR}{R}
 \end{align*}
 \]

 (A)

 – recall that \(c^x_W (W, R)\) is homogeneous of degree zero in \(W\) and \(R\) so that [by Euler’s Theorem]:

 \[
 0 \times c^x_W = W c^x_{WW} + R c^x_{WR}
 \]

 (B)

 – use (B) in (A):

 \[
 \tilde{c}^x_W = - \frac{R c^x_{WR}}{c^x_W} \left[\tilde{W} - \tilde{R} \right]
 \]

 (C)
the [Allen-Uzawa] substitution elasticity in technology in the X-sector is defined (via the cost function) as [see Sydsæter, Strom, and Berck (2000, p. 155)]:

$$\sigma_X \equiv \frac{C^x C'_{WR}}{C'_{R} C_{W}^x} = \frac{c^x c^x_{WR}}{c^x_{R} c^x_{W}} \geq 0$$

(D)

using (D) in (C) we get after some steps:

$$\tilde{c}_W^x = - \frac{c^x_{R} c^x_{R}}{c^x_{R}} \frac{R c^x_{WR}}{c^x_{W}} \left[\tilde{W} - \tilde{R} \right]$$

$$= - \left(\frac{c^x_{R} R}{c^x_{R}} \right) \left(\frac{c^x_{W} c^x_{WR}}{c^x_{R} c^x_{W}} \right) \left[\tilde{W} - \tilde{R} \right]$$

$$= - \theta_{KX} \sigma_X \left[\tilde{W} - \tilde{R} \right]$$

(M5)
– using the same approach we find:

\[\tilde{c}_W^y = -\theta_{KY} \sigma_Y \left[\tilde{W} - \tilde{R} \right] \] \hspace{1cm} (M6)

\[\tilde{c}_R^x = \theta_{LX} \sigma_X \left[\tilde{W} - \tilde{R} \right] \] \hspace{1cm} (M7)

\[\tilde{c}_R^y = \theta_{LY} \sigma_Y \left[\tilde{W} - \tilde{R} \right] \] \hspace{1cm} (M8)

where \(\sigma_Y \) is the substitution elasticity in the \(Y \)-sector:

\[\sigma_Y \equiv \frac{c_y^y c_{WR}^y}{c_R^y c_W^y} \geq 0 \]
• By substituting (M5)-(M8) in the relevant places in (M3) and (M4) we obtain the final expressions for the factor market equilibrium loci:

\[\tilde{L} = \lambda_{LX} \left(\tilde{X} + \tilde{c}_W^x \right) + \lambda_{LY} \left(\tilde{Y} + \tilde{c}_W^y \right) \]

\[= \lambda_{LX} \left(\tilde{X} - \theta_{KX} \sigma_X \left[\tilde{W} - \tilde{R} \right] \right) + \lambda_{LY} \left(\tilde{Y} - \theta_{KY} \sigma_Y \left[\tilde{W} - \tilde{R} \right] \right) \]

\[= \lambda_{LX} \tilde{X} + \lambda_{LY} \tilde{Y} - \left[\lambda_{LX} \theta_{KX} \sigma_X + \lambda_{LY} \theta_{KY} \sigma_Y \right] \left[\tilde{W} - \tilde{R} \right] \quad (M3') \]

\[\tilde{K} = \lambda_{KX} \left(\tilde{X} + \tilde{c}_R^x \right) + \lambda_{KY} \left(\tilde{Y} + \tilde{c}_R^y \right) \]

\[= \lambda_{KX} \left(\tilde{X} + \theta_{LX} \sigma_X \left[\tilde{W} - \tilde{R} \right] \right) + \lambda_{KY} \left(\tilde{Y} + \theta_{LY} \sigma_Y \left[\tilde{W} - \tilde{R} \right] \right) \]

\[= \lambda_{KX} \tilde{X} + \lambda_{KY} \tilde{Y} + \left[\lambda_{KX} \theta_{LX} \sigma_X + \lambda_{KY} \theta_{LY} \sigma_Y \right] \left[\tilde{W} - \tilde{R} \right] \quad (M4') \]
In the final step we deduct \((M4')\) from \((M3')\) to get:

\[
\tilde{L} - \tilde{K} = (\lambda_{LX} - \lambda_{KX}) \tilde{X} + (\lambda_{LY} - \lambda_{KY}) \tilde{Y} - [\lambda_{LX} \theta_{KX} \sigma_X + \lambda_{LY} \theta_{KY} \sigma_Y + \lambda_{KX} \theta_{LX} \sigma_X + \lambda_{KY} \theta_{LY} \sigma_Y] [\tilde{W} - \tilde{R}]
\]

or [after simplification, using \(\lambda_{LY} = 1 - \lambda_{LX}, \lambda_{KY} = 1 - \lambda_{KX}\), and gathering terms]:

\[
\lambda^* \left[\tilde{X} - \tilde{Y} \right] = \left[\tilde{L} - \tilde{K} \right] + \left[a_X \sigma_X + a_Y \sigma_Y \right] [\tilde{W} - \tilde{R}] \tag{M9}
\]

with:

\[
\lambda^* \equiv \lambda_{LX} - \lambda_{KX}
\]

\[
a_X \equiv \lambda_{LX} \theta_{KX} + \lambda_{KX} \theta_{LX} > 0
\]

\[
a_Y \equiv \lambda_{LY} \theta_{KY} + \lambda_{KY} \theta_{LY} > 0
\]
• **Note:** λ^* is again a measure of relative factor intensity but now in terms of physical units [θ^* is in terms of factor shares]

– if X is relatively labour intensive ($\lambda^* > 0$) then an increase in X/Y is associated with a rise in W/R.

– in the absence of distortions and/or taxes λ^* and θ^* always have the same sign:

\[
\lambda^* = 0 \iff \theta^* = 0
\]

Proof: see A&S (1980, pp. 169-170)

• We now have all the ingredients to characterize the general equilibrium in this model.
The key equations are:

\[\tilde{X} - \tilde{Y} = -\sigma_D \left[\tilde{P}_X - \tilde{P}_Y \right] \] \hspace{1cm} (M1)

\[\tilde{P}_X - \tilde{P}_Y = \theta^* \left[\tilde{W} - \tilde{R} \right] \] \hspace{1cm} (M2)

\[\lambda^* \left[\tilde{X} - \tilde{Y} \right] = \left[\tilde{L} - \tilde{K} \right] + \left[a_X \sigma_X + a_Y \sigma_Y \right] \left[\tilde{W} - \tilde{R} \right] \] \hspace{1cm} (M9)

- (M1) is the relative demand equation relating \(X/Y \) to \(P_X/P_Y \)
- (M2) is the competitive (relative) pricing relationship relating \(P_X/P_Y \) to \(W/R \)
- (M9) represents the factor market equilibrium conditions relating \(W/R \) to \(X/Y \) and \(\bar{L}/\bar{K} \)

- In Figure 6.2 we illustrate the determination of the general equilibrium under the assumption that the \(X \)-sector is relatively labour intensive (so that \(\lambda^* > 0 \) and \(\theta^* > 0 \))
- The D curve in the top right-hand panel is the demand equation (M1). It slopes down because $\sigma_D > 0$

- The FME curve in the top left-hand panel is the factor markets equilibrium locus (M9), holding constant \bar{L}/\bar{K}. In view of the assumption that $\lambda^* > 0$ it is an upward sloping line.

- In the bottom left-hand panel we turn the corner.

- The CPR curve in the bottom right-hand panel represents the competitive pricing relationship equation (M2). The assumption that $\theta^* > 0$ implies that this curve is upward sloping.

- Together, CPR and FME characterize the supply side of the model. The supply curve, S, in the top right-hand panel is constructed graphically by “completing the boxes” for different relative price levels (see ABCD and FGHI). The thus constructed supply curve is upward sloping.

- General equilibrium occurs at point E_0 where demand equals supply.
Figure 6.2: Two-Sector General Equilibrium (X labour-intensive)
Before turning to the tax analysis we first study two applications:

- increase in $\frac{L}{K}$
- special Leontief-case with zero substitution in production ($\sigma_Y = \sigma_X = 0$)

The effect of an increase in $\frac{L}{K}$

- In Figure 6.3 the only curve affected is the FME curve (which shifts up)
- as a result the supply curve shifts up (from S_0 to S_1) and the equilibrium shifts from E_0 to E_1
- P_X/P_Y falls, X/Y rises, and W/R falls. [Result related to Rybczynski Theorem: at unchanged commodity prices, an expansion in one factor results in an absolute decline in the commodity intensive in the use of the other factor]
Figure 6.3: Increase in Labour Endowment (X labour-intensive)
The Leontief case

- In Figure 6.4 we illustrate the Leontief case of the model.
- Since $\sigma_X = \sigma_Y = 0$ it follows from (M9) that FME is horizontal (see FME_0).
- As a result, the supply curve is also horizontal (see S_0).
- Equilibrium is at point E_0. Equality between D and S_0 determines the relative goods price (P_X/P_Y) which, via the pricing relationship CPR, determines the wage-rental rate (W/R).
- An increase in \bar{L} leads to an upward shift in the FME curve (from FME_0 to FME_1), an upward shift in supply (from S_0 to S_1), a decrease in P_X/P_Y, and a decrease in W/R.
Figure 6.4: Leontief Technology (X labour-intensive)
Adding Taxes to the Model

• Following A & S (pp. 173-183) we consider the following range of *ad valorem* taxes:

 – taxes on factor prices in both sectors: \(t_{KX}, t_{KY}, t_{LX}, \) and \(t_{LY} \) (sometimes we consider common factor taxes \(t_{KX} = t_{KY} \) and \(t_{LX} = t_{LY} \) and sometimes common sector taxes \(t_{KX} = t_{LX} \) and \(t_{KY} = t_{LY} \))

 – taxes on the outputs: \(t_X \) and \(t_Y \)

 – **Note**: all revenue recycled to households in a lump-sum fashion and we continue to focus on the homothetic case

• The model is affected as follows:

 – the factor market equilibrium conditions are now:

 \[
 \bar{L} = c_x^w \left[W (1 + t_{LX}) , R (1 + t_{KX}) \right] X + c_y^w \left[W (1 + t_{LY}) , R (1 + t_{KY}) \right] Y \tag{1}
 \]

 \[
 \bar{K} = c_x^r \left[W (1 + t_{LX}) , R (1 + t_{KX}) \right] X + c_y^r \left[W (1 + t_{LY}) , R (1 + t_{KY}) \right] Y \tag{2}
 \]
the (producer) price equations are:

\[P_X = c^x [W (1 + t_{LX}) , R (1 + t_{KX})] \] \hspace{1cm} (3)
\[P_Y = c^y [W (1 + t_{LY}) , R (1 + t_{KY})] \] \hspace{1cm} (4)

the demand equations are:

\[X = d^x [P_X (1 + t_X) , P_Y (1 + t_Y)] W \bar{L} + R \bar{K} + T \] \hspace{1cm} (5)
\[Y = d^y [P_X (1 + t_X) , P_Y (1 + t_Y)] W \bar{L} + R \bar{K} + T \] \hspace{1cm} (6)

the tax revenue is:

\[T = W [t_{LX} L_X + t_{LY} L_Y] + R [t_{KX} K_X + t_{KY} K_Y] \]
\[+ t_X P_X X + t_Y P_Y Y \] \hspace{1cm} (7)

endogenous: \(X, Y, P_X, P_Y, W, R,\) and \(T\)

exogenous: \(\bar{K}, \bar{L}, t_{LX}, t_{LY}, t_{KX}, t_{KY}, t_X, t_Y\)
Following exactly the same steps as before we find the log-linearized model [see also Slide 34]

\[
\tilde{X} - \tilde{Y} = -\sigma_D \left[\left(\tilde{P}_X - \tilde{P}_Y \right) + (\tilde{t}_X - \tilde{t}_Y) \right] \quad (M1)
\]

\[
\tilde{P}_X - \tilde{P}_Y = \theta^* \left[\tilde{W} - \tilde{R} \right] + \theta_{LX} \tilde{t}_{LX} - \theta_{LY} \tilde{t}_{LY} + \theta_{KX} \tilde{t}_{KX} - \theta_{KY} \tilde{t}_{KY} \quad (M2)
\]

\[
\lambda^* \left[\tilde{X} - \tilde{Y} \right] = \left[a_X \sigma_X + a_Y \sigma_Y \right] \left[\tilde{W} - \tilde{R} \right]
+ a_X \sigma_X \left[\tilde{t}_{LX} - \tilde{t}_{KX} \right] + a_Y \sigma_Y \left[\tilde{t}_{LY} - \tilde{t}_{KY} \right] \quad (M3)
\]

- (M1) is the relative demand equation relating \(X/Y \) to \(P_X/P_Y \) and \(t_X/t_Y \)

- (M2) is the competitive (relative) pricing relationship relating \(P_X/P_Y \) to \(W/R \) and the various tax rates

- (M3) represents the factor market equilibrium conditions relating \(W/R \) to \(X/Y \) and the various tax rates
• **Remark 1**: tax equivalencies

- A tax on capital income and labour income at the same rate \(t_{KX} = t_{KY} = t_K \), \(t_{LX} = t_{LY} = t_L \), and \(t_L = t_K = t \) has the same effect as a tax on both products at the same rate \(t_X = t_Y \). No effect on \(X/Y \), \(P_X/P_Y \), or \(W/R \); taxes drop out of (M3) and (M2) simplifies to:

\[
\tilde{P}_X - \tilde{P}_Y = \theta^* \left[\tilde{W} - \tilde{R} \right] + (\theta_{LX} - \theta_{LY}) \tilde{t}_L + (\theta_{KX} - \theta_{KY}) \tilde{t}_K \\
= \theta^* \left[\tilde{W} - \tilde{R} \right] + \theta^* (\tilde{t}_L - \tilde{t}_K) \tag{M2'}
\]

- A tax on both factors in the same industry (e.g. \(t_{LX} = t_{KX} \)) has no substitution effect and is equivalent to an excise tax [specific tax on good \(X \)]

- A tax on capital in both sectors at the same rate \(t_{KX} = t_{KY} \) is simply a tax on the fixed factor \(\bar{K} \)
– implication: if we know the effect of the general tax t then we only need to study three (out of the eight) taxes set out in the model, provided they are independent. E.g. if we know the respective effects of t_{KX}, t_X, and t_K then we also know the effects of the remaining taxes. A&K present the following equivalency table:

\[
\begin{align*}
 t_{KX} + t_{LX} &= t_X \\
 t_{KY} + t_{LY} &= t_Y \\
 t_K + t_L &= t
\end{align*}
\]

Table 1: Tax Equivalencies
• **Remark 2** on factor intensities

 – in presence of taxes [or other distortions] the ranking according to physical factor intensity \((\lambda^*)\) may not be the same as the ranking according to factor shares \((\theta^*)\).

 – For now we simply assume that the rankings remain the same.
General Equilibrium Tax Effects

- The effect on a marginal change in the **output tax** in sector X is illustrated in Figure 6.5.
 - $\tilde{t}_X > 0$; all other taxes unchanged: $\tilde{t}_Y = \tilde{t}_{LX} = \tilde{t}_{LY} = \tilde{t}_{KX} = \tilde{t}_{KX} = 0$
 - X relatively labour-intensive, i.e. we continue to assume that $\theta^* > 0$ and $\lambda^* > 0$
 - model reduces to:

$$\tilde{X} - \tilde{Y} = -\sigma_D \left[\tilde{P}_X - \tilde{P}_Y + \tilde{t}_X \right] \quad (M1)$$

$$\tilde{P}_X - \tilde{P}_Y = \theta^* \left[\tilde{W} - \tilde{R} \right] \quad (M2)$$

$$\lambda^* \left[\tilde{X} - \tilde{Y} \right] = \left[a_X \sigma_X + a_Y \sigma_Y \right] \left[\tilde{W} - \tilde{R} \right] \quad (M3)$$

- demand shifts down from D_0 to D_1
- equilibrium shifts from E_0 to E_1, P_X/P_Y falls, X/Y falls, and W/R falls.
there is only an output (or volume) effect: pattern of demand changes in favour of good Y. Since X/Y falls and since X is relatively labour intensive, the wage-rental ratio falls. This effect holds regardless of the magnitude of the substitution elasticity in the X-sector.

mathematically we get by solving the model (after eliminating $\tilde{W} - \tilde{R}$):

$$
\begin{bmatrix}
1 & \sigma_D \\
-\lambda^*\theta^* & a_X\sigma_X + a_Y\sigma_Y
\end{bmatrix}
\begin{bmatrix}
\tilde{X} - \tilde{Y} \\
\tilde{P}_X - \tilde{P}_Y
\end{bmatrix}
=
\begin{bmatrix}
-1 \\
0
\end{bmatrix}
\sigma_D\tilde{t}_X
$$
or:

\[
\begin{bmatrix}
\tilde{X} - \tilde{Y} \\
\tilde{P}_X - \tilde{P}_Y
\end{bmatrix}
= \frac{1}{|\Delta|}
\begin{bmatrix}
a_X \sigma_X + a_Y \sigma_Y & -\sigma_D \\
\lambda^* \theta^* & 1
\end{bmatrix}
\begin{bmatrix}
-1 \\
0
\end{bmatrix}
\sigma_D \tilde{t}_X
\]

\[
= -\frac{1}{|\Delta|}
\begin{bmatrix}
a_X \sigma_X + a_Y \sigma_Y \\
\lambda^* \theta^*
\end{bmatrix}
\sigma_D \tilde{t}_X
\]

where \(|\Delta| \equiv a_X \sigma_X + a_Y \sigma_Y + \lambda^* \theta^* \sigma_D > 0\)
Figure 6.5: Increase in the Output Tax t_X (X labour-intensive)
The effect on a marginal change in the capital tax in sector X is illustrated in Figures 6.6 and 6.7.

- $\tilde{t}_{KX} > 0$; all other taxes unchanged: $\tilde{t}_X = \tilde{t}_Y = \tilde{t}_{LX} = \tilde{t}_{LY} = \tilde{t}_{KY} = 0$
- X relatively labour-intensive, i.e. we continue to assume that $\theta^* > 0$ and $\lambda^* > 0$
- model reduces to:

\[
\tilde{X} - \tilde{Y} = -\sigma_D \left[\tilde{P}_X - \tilde{P}_Y \right] \tag{M1}
\]
\[
\tilde{P}_X - \tilde{P}_Y = \theta^* \left[\tilde{W} - \tilde{R} \right] + \theta_{KX} \tilde{t}_{KX} \tag{M2}
\]
\[
\lambda^* \left[\tilde{X} - \tilde{Y} \right] = \left[a_X \sigma_X + a_Y \sigma_Y \right] \left[\tilde{W} - \tilde{R} \right] - a_X \sigma_X \tilde{t}_{KX} \tag{M3}
\]

- in general both FME and CPR are affected: both output effect and factor substitution effect
In **Figure 6.6** we assume the substitution elasticity in the X-sector is zero ($\sigma_X = 0$)

- FME is not affected by the tax change
- CPR shifts to the right from CPR$_0$ to CPR$_1$
- supply shifts to the right from S$_0$ to S$_1$
- equilibrium shifts from E$_0$ to E$_1$, P_X/P_Y rises, X/Y falls, and W/R falls.

 Despite the fact that capital is taxed, the rental rate on capital rises relative to wages.

- there is only an **output** (or **volume**) **effect**: P_X/P_Y falls and demand shifts toward good Y (X/Y falls). Since X is labour-intensive, labour demand drops off whilst capital demand is boosted. In equilibrium W/R has to fall.
Figure 6.6: Increase in the Corporate Tax t_{KX} (X labour-intensive, $\sigma_X = 0$)
In Figure 6.7 we consider the general case (i.e. $\sigma_X > 0$)

- now FME shifts down from FME_0 to FME_1
- as before CPR shifts to the right from CPR_0 to CPR_1
- supply shifts to the right from S_0 to S_1
- equilibrium shifts from E_0 to E_1, P_X/P_Y rises, X/Y falls, and W/R rises. Now the rental rate on capital falls relative to wages.

- we can write the model is one matrix equation as:

$$
\begin{bmatrix}
1 & \sigma_D \\
-\lambda^*\theta^* & a_X\sigma_X + a_Y\sigma_Y
\end{bmatrix}
\begin{bmatrix}
\tilde{X} - \tilde{Y} \\
\tilde{P}_X - \tilde{P}_Y
\end{bmatrix}
= \begin{bmatrix}
0 \\
\Gamma
\end{bmatrix}
\tilde{t}_{KX}
$$

where Γ is:

$$
\Gamma \equiv a_X\sigma_X (\theta_{KX} + \theta^*) + a_Y\sigma_Y \theta_{KX}
= a_X\sigma_X \theta_{KY} + a_Y\sigma_Y \theta_{KX} > 0
$$
$$\begin{bmatrix}
\tilde{X} - \tilde{Y} \\
\tilde{P}_X - \tilde{P}_Y
\end{bmatrix} = \frac{1}{|\Delta|} \begin{bmatrix}
a_X \sigma_X + a_Y \sigma_Y & -\sigma_D \\
\lambda^* \theta^* & 1
\end{bmatrix} \begin{bmatrix}
0 \\
1
\end{bmatrix} \Gamma\tilde{t}_{KX}
$$

$$= \frac{1}{|\Delta|} \begin{bmatrix}
-\sigma_D \\
1
\end{bmatrix} \Gamma\tilde{t}_{KX}$$

where $|\Delta| \equiv a_X \sigma_X + a_Y \sigma_Y + \lambda^* \theta^* \sigma_D > 0$

- the effect on the wage-rental ratio, W/R, can be found by substituting the solution for $\tilde{P}_X - \tilde{P}_Y$ into \((M2) \):

$$\theta^* \left[\tilde{W} - \tilde{R} \right] = \left[\tilde{P}_X - \tilde{P}_Y \right] - \theta_{KX} \tilde{t}_{KX}$$

$$= \frac{a_X \sigma_X \theta_{KY} + a_Y \sigma_Y \theta_{KX}}{a_X \sigma_X + a_Y \sigma_Y + \lambda^* \theta^* \sigma_D} \tilde{t}_{KX} - \theta_{KX} \tilde{t}_{KX}$$
or (after some steps):

\[\theta^\ast \left[\tilde{W} - \tilde{R} \right] = \left[\frac{a_X \sigma_X - \lambda^\ast \theta_{KX} \sigma_D}{a_X \sigma_X + a_Y \sigma_Y + \lambda^\ast \theta^\ast \sigma_D} \right] \tilde{t}_{KX} \]

\text{(FP)}

Notes:

- **diamond** denominator is positive (as \(a_X > 0, a_Y > 0, \sigma_X \geq 0, \sigma_Y \geq 0, \sigma_D > 0, \) and \(\lambda^\ast \theta^\ast > 0 \)) so sign of the effect on \(W/R \) is determined by numerator

- **diamond** numerator has two terms: (a) factor substitution effect (represented by \(a_X \sigma_X \)) and (b) output effect (represented by \(-\lambda^\ast \theta_{KX} \sigma_D \))

- **diamond** output effect is negative (positive) if the \(X \)-sector is labour (capital) intensive
Figure 6.7: Increase in the Corporate Tax t_{KX} (X labour-intensive)
Extensions to the Basic Model

The basic two-by-two model can easily be extended.

- factor supplies can be made endogenous
 - [static] endogenous labour supply [add leisure to household utility function]
 - [dynamic] saving and capital accumulation [studied in Chapter 8]
- intersectoral mobility assumption can be augmented:
 - [static] Mussa-Neary: labour mobile but capital sector-specific
 - [static] McLure: capital mobile but labour sector-specific
 - [dynamic] adjustment costs on capital and/or labour
- representative agent model can be replaced by heterogeneous agent model
 - now we can also study distribution issues [how do taxes affect different households etc.]
• open economy version of the model

• allow for imperfections on the goods and or labour market [see Chapter 7]

• using computers we can formulate, calibrate, and run simulations with highly detailed/complex computable general equilibrium models
 – sky is the limit
 – information on key elasticities shaky
 – scenario analyses