Question 1

[Adapted from Sandmo (1985, p. 296)] Consider the gross taxation case studied in section 4.2.2 of the book. We are interested in the comparative static effect of the tax \(t_A \) on the amount of the risky asset bought \(\partial b/\partial t_A \). The conditions jointly determining \(\partial C_1/\partial t_A \) and \(\partial b/\partial t_A \) are stated in equations (4.36)-(4.38) in the book. Here we focus on the pure portfolio decision and assume that \(a + b = h_1 - C_1 \) is held constant (i.e. we set \(\partial C_1/\partial t_A = 0 \) and ignore (4.36)).

(a) Show that \(\partial b/\partial t_A \) can be written as:

\[
\frac{\partial b}{\partial t_A} = \frac{b}{1 - t_A} + \frac{r(a + b) E[U''(\tilde{x} - r)]}{1 - t_a} E[U''(\tilde{x} - r)^2].
\] (1)

(b) Compute the comparative static effect on \(b \) of an increase in \(a + b \). Show that it can be written as:

\[
\frac{\partial b}{\partial (a + b)} = -\frac{1 + r(1 - t_A) E[U''(\tilde{x} - r)]}{1 - t_A} E[U''(\tilde{x} - r)^2].
\] (2)

(c) Derive an expression relating \(\partial b/\partial t_A \) to the wealth elasticity of the risky asset, which we define as \(\varepsilon_B = \frac{a+b}{b} \frac{\partial b}{\partial (a+b)} \). Show that an increase in \(t_A \) has conflicting wealth and substitution effects. Which effect do you expect to dominate? Explain.

Question 2

[Sandmo (1970)] This question deals with the issue of income risk. The representative household has the following lifetime utility function:

\[
E(\tilde{\Lambda}) = U(C_1) + \left(\frac{1}{1 + \rho} \right) E[U(\tilde{C}_2)],
\] (1)
where $E(\cdot)$ is the expectations operator, C_t is consumption in period t, ρ is the constant rate of pure time preference ($\rho > 0$), and $U(\cdot)$ is the felicity function. This function features a positive but diminishing marginal felicity, i.e. $U''(\cdot) > 0 > U'''(\cdot)$. There is a single asset with a certain rate of return, r. The budget identities for the two periods are:

$$Y_1 = C_1 + S_1,$$
$$\tilde{C}_2 = \tilde{Y}_2 + (1 + r) S_1,$$

where Y_t is income in period t and S_1 is saving in the first period. First-period income is deterministic but future income is stochastic, i.e. the household faces income risk. The (known) probability density function for \tilde{C}_2 is denoted by $f(\tilde{C}_2)$.

(a) Derive the first-order necessary conditions for utility maximization. Also state the second-order condition.

(b) Derive the effects on current consumption and saving of an increase in current income, Y_1. Explain how you use the second-order condition to determine the sign of $\partial C_1 / \partial Y_1$.

(c) Assume that future income can be written as $\tilde{Y}_2 + \theta$, where $\theta = 0$ in the initial situation. Show the effect on current consumption and saving of a small increase in θ. Explain what happens to the expected value (mean) of future income as a result of the shock.

(d) (\star) Write future income as $\gamma \tilde{Y}_2 + \theta$ and study the effects on C_1 and S_1 of a mean-preserving increase in the uncertainty about future income. [Hint: increase γ to increase riskiness but decrease θ to keep the mean constant.]

Question 3

[Eaton and Rosen (1980a), Block and Heineke (1973)] In this question we investigate the effect of wage uncertainty and taxation on labour supply by the representative household. The household has the following utility function:

$$U = U(C, \bar{L} - L),$$

where U is utility, C is consumption, \bar{L} is the exogenous time endowment, and L is labour supply ($\bar{L} - L$ is thus leisure). The utility function has the usual properties, i.e. $U_C > 0$, $U_{LL} > 0$, $U_{CC} < 0$, $U_{L-L,L-L} < 0$, and $U_{CC}U_{L-L,L-L} - U_{C,L-L}^2 > 0$. The budget constraint is given in real terms by:

$$\tilde{C} = m + \bar{w}(1 - t_L)L,$$
where \(m \) is real non-labour income, \(\tilde{w} \) is the stochastic real wage, and \(t_L \) is the labour income tax. Both \(m \) and \(t_L \) are non-stochastic. The household knows the probability density function for the gross wage \((f(\tilde{W})) \) and chooses \(C \) and \(L \) in order to maximize expected utility.

(a) Derive the first-order necessary condition for labour supply. Also state the second-order condition for a maximum.

(b) Derive the effect on labour supply of an increase in non-labour income, \(m \). Prove that leisure is a normal good if the utility function is additively separable (i.e. \(U_{C,L-L} = 0 \)).

(c) (★) Assume that utility is additively separable and can be written as:

\[
U = \frac{1}{\gamma} [C^\gamma - 1] + V (\bar{L} - L),
\]

where \(1 - \gamma \ (> 0) \) is the constant rate of relative risk-aversion, and \(V (\cdot) \) features the derivatives \(V'(\cdot) > 0 \) and \(V''(\cdot) < 0 \). Derive the effect on labour supply of an increase in the labour income tax, \(t_L \). Prove that the effect will be negative if \(1 - \gamma \approx 0 \) but positive if \(1 - \gamma \) is sufficiently high.

Question 4

[Allingham and Sandmo (1972)] This question investigates a simple static model of income tax evasion. A risk-averse household’s actual before-tax income, \(W \), is exogenously given and known to that household but not to the tax collection agency. The household declares income \(X \) to the tax agency and pays a proportional tax, \(t_Y \), on declared income. With probability \(\pi \) the household is investigated by the tax agency who will then observe \(W \). If \(W \) exceeds \(X \) then the household pays tax on the undeclared income, \(W - X \), and the rate \(t_P \) which exceeds \(t_Y \). With probability \(1 - \pi \) the household is not investigated. The indirect utility function is written as \(\tilde{U} = V (\tilde{Y}) \) where \(\tilde{U} \) is stochastic utility, \(\tilde{Y} \) in stochastic after-tax income, and the indirect utility function satisfies \(V'(\tilde{Y}) > 0 \) and \(V''(\tilde{Y}) < 0 \) for all realizations of \(\tilde{Y} \).

(a) Derive the expression for \(\tilde{Y} \).

(b) Assume that the household chooses declared income \(X \) in order to maximize its expected utility. Derive the first- and second order conditions for a maximum.

(c) Derive the conditions under which the household will rationally choose to under-report income (by choosing \(X < W \)). Explain.

(d) Show that for an initially tax-evading household, an increase in the penalty rate \((t_P) \) or the probability of detection \((\pi) \) will lead to an increase in declared income.
(e) Define the relative risk aversion function as \(R(\tilde{Y}) \equiv -\tilde{Y}U''(\tilde{Y})/U''(\tilde{Y}) \). Derive the comparative static result of an increase in before-tax income \((W)\) on the proportion of income that is declared \((X/W)\). Relate your expression to the relative risk aversion function.

References

