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1 Introduction

In this appendix all computations for the main paper are presented. A more general case than the
one discussed in the main paper is dealt with here. Specifically, the model discussed here is more
general in three aspects. First, here (as in an earlier version of the paper), preference for diversity
(n) and the markup (¢ = o¢/(0c — 1)) are distinguished separately. So instead of (2) in the text

we use:
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The consequences of using these more general specifications are found in equations (A.13)-(A.16)
below. Since setting n = p does not excluded anything of interest in the present model this
simplification has been adopted.

Second, more general versions of the sub-utility function (1) and the export demand equation
(8) have been used in this appendix:
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where o4 is the Armington elasticity and o is the real exchange rate effect in export demand.
The consequences of these modifications are as follows. If o4 > 1 (< 1) an increase in the real
exchange rate leads to an increase (decrease) in the share of consumption that is spent on domestic
goods. Similarly, if o7 > 1 (< 1) an increase in the real exchange rate causes an increase in the
demand for the domestic goods from abroad. The consequences of these generalisations are found
throughout the appendix starting in (A.10).

Third, in the appendix we allow for a downward sloping marginal cost curve at firm level by
letting the production function of individual firms be homogeneous of degree A > 1. So instead of
(9) in the text we use:

Yi(r) + f = GUE(r), Li(7)) = Li(r M Ki() 19,

The consequences of this more general case are given in equations (A.22)-(A.24). Since the product
subsidy does not affect the equilibrium size of the firm, setting A = 1 does not affect anything
substantial in the analysis.

2 Optimal choices of the household

The optimisation problem faced by the representative consumer can be solved in two stages. In
stage 1 the dynamic problem is solved. This yields a path of full consumption, X(v,7). In
stage 2 the static allocation problem is solved. First, full consumption is allocated between its
components C(v,7) and L(v,7). Then C(v,7) is allocated over Cp(v,7) and Cp(v, 7). Finally,
Cp(v,7) and Cr(v,T) are allocated, respectively, over the different varieties of the differentiated
product, Cp (v, 7) and C (v, T).

Stage 1. Define the ideal cost-of-living index in period 7 as Py (7):

PU(T)U(U7 7—) = X(”? 7—)7 (Al)

where U(v,7) = C(v,7)?[1 — L(v,7)]'77. In the first stage the following optimisation problem is

solved.
{[}1(13:3)} ) log [U(v,7)]exp [(a + B)(t — v)] dT
s.t. % = [r(n)+ Bl A(w, 7))+ W(r) —T(1) — Pu(r)U(v,T), (A.2)

where A(v,t) is taken as given in period ¢. This leads to the following first-order conditions:

007 = Mo, 7)Py(T), (A.3)
% = [a—r(T)] A(v, 1), (A4)

where A(v,7) is the co-state variable of the flow budget restriction. The integrated (life-time)
budget restriction (with a NPG condition imposed) is:

Amw+mw-Zm%wwwﬂwﬁ[PW+mw]m

[o v, 7) " exp [ [r(mm]d#} dr, (A.5)



where H(t) is human wealth, i.e. the net present value of the household’s time endowment:

O = [ W) - T [— [+ ﬁ]du] dr

The path of A(v, 7) is described by (A.4). Using this in (A.5) yields:

(a+ B) [A(v,t) + H(t)] = = X (v,t). (A.6)

A(v,t)

Full consumption is a constant proportion of total wealth.
Stage 2-a. Full consumption X (v,t) is now allocated over goods, C(v,t), and leisure, 1 —
L(v,t).
max Uv,t) = C(v,t)"[1— L(v,t)]*" A7
s U = Clot) (1= Lo, ) (A7)
st. X(v,t) = PoC(v,t) +W(t)[1 — L(v,t)].
This implies that:
W1 L(o,t)] = (1 D)X (0,8), Pe(®)C(o,t) = 7X(0,1). (A.8)

By substituting (A.8) into the utility function U(v,t) and noting (A.1), we recover the expression
for Py (t):

Py(t) = [y (1 =)' 7] Pe(t)W(t)' . (A.9)

Stage 2-b. Total goods consumption C(v,t) is now allocated over consumption of the com-
posite differentiated goods, Cp(v,t) and Cr(v,t).

oa/(ca—1)
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st. Po(t)C(v,t) = Cp(v,t)+ E(t)Cp(v,t). (A.10)
This implies that:
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By substituting (A.11) into the subutility function C(v,t), we recover the expression for Px(t):

3= yp) ] T E@ e (ifoa=1),

Fel= V5 + (L= p) 2 B a0 (if o g £ 1),

(A.12)
In view of (A.11)-(A.12) and (A.8), we can recover the expressions in the text (6) by setting
oa=1.

Stage 2-c. The agent now chooses Cp ;(v,t) such that the following static maximisation

program is solved.

o

N(t) o1 oo —1
max Cp(v,t) = N(@)" [N(@¢)™! Cpi(v,t 5c A.13
e p(v,1) )" [N(t) ; D,i(v,1) (A.13)
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Straightforward manipulation yields the demand functions for the domestically produced varieties

of the differentiated commodity by the agent of vintage v:

CDyi(U, t)

_ —(oc+m)+noc PDyi(t) e
(0.0 = N(t)~leotm+ <7> . (A.14)

Pp(t)
By substituting (A.14) into the definition for Cp(v,t) the expression for Pp(t) is obtained:
1/(1-0.)

N(t)
Pp(t) = N()™" [N(t)™°¢ Y Pp(t)' ¢ : (A.15)
i=1

The demand for foreign varieties (Cp ;(v,t)) and the foreign price index (Pp(t)) are derived in a
similar fashion:

Cri(w,t)  _  yey—toctnnoe (Pri®)) 7"
Cp(v,t) () o ( Pp(t) ) ’ (A.16)
N* 1/(1—0s)
Pp(t) = (N*)*n (N*)fo(rZPF)j(t)lfoc
=1

In the text we have analyzed the standard Dixit-Stiglitz case for which n = p = o¢/(oc — 1).

3 Optimal choices of a representative firm

The representative firm ¢ aims to maximise (10) subject to the demand restriction and the pro-
duction function. The Lagrangian is defined as follows.

£(t) = Pp(t)[L+sp(t)]Yi(t) = W(t)Pp(t)Li(t) — Ro(t)Pp(t)Ki(?) (A.17)
FAy (t) [F(Li(t), Ki(t)) — f = Yi(t)],

where Y;(t) = Cp,i(t) + Cf ,;(t) is the price-elastic demand facing firm i. The main first-order
necessary conditions are:

0£(t) _ . i)\

K1) =0:—Rr(t)Pp(t) + Ay (t) <3Kl(t)> =0, (A.18)
0L(t) _ . aYi(t)\

ori(r) ~ PR () (amw) =9 (A.19)
0L(t) . aYi(t) \

YOI 0: [1+sp(t)] Yi(t) + [Pp,i(t) 1+ sp(t)] — Ay (t)] (W) =0. (A.20)

Equation (A.20) can be used to solve for Ay (¢) in terms of the mark-up (p;(¢)) and the price chosen
by the firm: Ay (t) = Pp,(t)[1+sp(t)]/1;(t), where Ay (t) has the interpretation of marginal cost,
w; () = €;(t)/]ei(t) — 1] and €;(¢) is the (absolute value of the) price elasticity of demand:

Ppi(t) 9Yi(t)
O Yi(t) 9Pp(t)

ei(t) =oc, (A.21)

where the last equality follows from the fact that both Cp,;(t) and C}, ;(t) feature a price elasticity
of o¢. In view of (A.21) the markup is constant and equal across firms: p = p; = 0¢/(0c—1). By



substituting the expression for Ay (¢) into (A.18) and (A.19) and noting that u = 7 the expressions
in (11) in the text are obtained. Under free exit and entry of firms, profits of all active firms go
to zero, II;(t) = 0. The gross production function is homogeneous of degree A:

aG() aG()
OL;(t) i(t) OK;(t)

Kilt) = AG(Ki(t), Lit)) = A[Yi(t) + f]. (A22)

By substituting the marginal productivity conditions into the profit definition and using (A.22),

we obtain:

Ppi(t) [1+sp(t)]
Mz‘(t)

Consequently, the zero profit condition is:

mm—( )M@E@—ME@+M~ (A.23)

u()Yil) = AYi(t) + £ (A.24)

4 Model Solution

In order to solve the general model, it is useful to first condense the static part of the model
(equations (TA.6)-(TA.12) in Table A-1) as much as possible. By using (TA.6)-(TA.10), the
change in output (Y (t)), employment (L(t)), the wage bill (W (t) + L(t)), the rental rate on land
(RL(t)), and the real exchange rate can be written in terms of the state variable (X (t)) and the
policy variable (5p(t)):

V() = nel(t) = (1-¢) [X() - 5p(t)] (A.25)
Rp(t) = W(t)+L(t) = (~1 — $)X(t) + p3p(t), (A.26)
By = —@_LH0IXOF 01l _ g %6) 4 Qpesp), (A.27)

(]. — 90) [O’T + 90(0’,4 — 1)]
where ¢ is defined as:

14+wrr
=—— _>1. A28
¢) 1+wLL(1*7’]E) - ( )

Equations (A.9) and (A.12) furthermore imply the expression for the true price index, Py (t):
Py(t) =v(1 = 6c)E(t) + (1 —1)W (). (A.29)

By differentiating (A.27) with respect to time (holding constant the parameters Qgx and Qgg),
and substituting the result in (TA.3), we obtain the expression for the domestic real rate of interest:

rpt(t) = QE‘X)?(t) + Qpsép(t). (A.30)

By using (A.26), (A.27) and (A.30) in (TA.1), (TA.2), and (TA.4) the dynamic equations for net
foreign assets, the value of land, and total consumption are obtained:

F(t) = rpF(t) = rp¢X (t) +rr(¢ — 1)3p(1), (A.31)

V(t) — wKQEX)'Z'(t) = Y‘Ff/(t) + TFWK(¢) — ].)X(t) — TFWK¢§P(t) + WKQEggp(t), (A32)



(1= Q)X (1) = (rp = ) X(t) — [ — @) /wic] [F(®) + V(1) + BE)| + Qusdp(t). (A.33)
By substituting (A.33) into (A.32), the system can be written in a single matrix equation as:
&(t) = Ax(t) + T'(t), (A.34)

where z(t)” = [F(t), V(t), X(t)]. The Jacobian matrix of coefficients on the right-hand side, A,
has typical element 6;; and is defined as:

TF 0 —¢rp
rr—a)Qg rr—a)Qg rr—a)Qp
A= 4 I;—Q)EXFX TF— ( Ii—Q)FJXFX WK [TF((/) N 1) + : Ii—Q)EXFX ' (A35)
T KZ IF—}?}U x) Tw K(f'—iﬂanx) 176—12;1?62(

The vectors of forcing terms, I'(t), is given by:

Vr(t) rr(¢ —1)sp(t) )
D) = | yl) | = | —rewnode+ (£5825) Sp(t) - (W=22) BO) | (A30)
vx (1) (:Qg;; §p(t)—<w—1<g_g—m)) B(t)

The determinant of A is:

_orE(rr — o)1 —wi)

A =
| | wK(l—QEx)

(A.37)

This expression can be further simplified for the general Cobb-Douglas case by noting that 04 =
op = 1 implies 1 — Qpx = ¢/(1 —vp). Equation (A.37) shows that stability requires the land
share to be between zero and unity (0 < wx < 1). Furthermore, for the general model stability
requires that Qpx < 1.

The characteristic equation of A, f(s) =| sI — A |, can be written as follows:

f(8) = (s — 611)9(s), (A.38)
where g¢(s) is a quadratic equation:
g(S) = 82 — [(511 — (531&)}( (1 — QE)()] S+ 611631¢)(1 - wK). (A39)

Equation (A.38) shows that one unstable root equals the interest rate in the rest of the world, i.e.
r{ = 611 = rp > 0. The other roots, 75 and —h*, are the solutions to g(s) = 0 in (A.39). It is
straightforward to verify for the general case that r3 > 0 and —h* < 0 provided 0 < wg < 1 and
Qgrx < 1. For the Cobb-Douglas case in the text equation (A.39) collapses to:

g(s) = 2 — [2611 —a] s — 611(611 —a)(1 —vp)(1 —wk)/wk, (A.40)

from which the following expressions and inequalities for r5 and —h*can be derived:

Lo 1 3 4611 (611 —)(1 —vp)(1 — wk) B

ry = 2(2611 a) |1+ \/1 + or (260 = a)? > 2611 — «, (A.41)
| 4611011 — a)(1 — yp)(1 — wk)

h = 3 (2(511 a) \/1 + wK(2611 — 04)2 1| >0. (A42)

Note that (A.41) implies that dr3/0¢ = 0, Or3/0vp < 0, Or3/0wk < 0, and Ir5/dsp < 0,
whereas (A.42) implies that Oh*/9¢ = 0, Oh* /Oy p < 0, Oh* /Owk < 0, and Oh*/dsp < 0.



4.1 Long-run results

The long-run effects on the state variables of permanent/unanticipated shocks in the product
subsidy (3p(t) = &p, §p(t) = 0, V¢t > 0) or the level of government debt (B(c0)) can be computed

from the steady-state version of (A.34). After some manipulation the following expressions is

obtained:
F(cc) o o B
V(o) | = | wrlo—1+0(-wil | sa—rat | wx(@-1) | g
X (o0) p(1—wi) — 1 -1

(A.43)
In the absence of bond policy, B(co) = 0, and equation (A.43) provides the results in section 3 of
the paper. The results of section 4.2 are obtained by setting B(co) = —wxép in (A.43).
4.2 Impact results

The impact results are obtained as follows. By taking the Laplace transform of (A.34) we obtain

the following expression:

L) ][ Lles)
A(s) E{‘f, st | = I{(O) + L{vy,s} | (A.44)
L{X,s} X(0) + L{vx,s}

where we have used the fact that the stock of net foreign assets is predetermined (i.e. F (0) =0),
and where A(s) = sI — A, so that | A(s) |= (s —77)(s —r3)(s + h*). By pre-multiplying (A.44)
by adj(A(r})) (for ¢ = 1,2) we obtain the two initial conditions for the jumps in the value of land
and total consumption:

E{Z?,r;" [ — (611 + 821)](rf — b33) — b23031
adj(A(r])A(r}) 5{‘{, it | = 821(rf — 833) + 823031 (A.45)
L{X,r}} O31(rf — 611)
013031 S13[ry — (611 + 621)]
(rf = 611)(rf — 633) — 613031 823(ry — 611) + 613621 X
631(rf — o11) (r¥ — 611)[rf — (611 + 621)]

5 ‘C’{ryFﬂaf} 0

V(O)+ L{yy,mi} | =10 |,

X(0) + L{vx,ri} 0

for r¥ (i = 1,2). Since the characteristic roots of A are distinct, rank(adj(A(r}))) = 1 and there
is exactly one independent equation per unstable root. Hence, (A.45) yields two independent
equations in the two unknowns, V(0) and X (0). Obviously, as the 7#’s are roots of A, the system

*

in (A.45) is singular, and some entries of adj(A(r}

)) can be simplified substantially for each

characteristic root. Indeed, after some manipulation it can be shown that:

—021(611 — 033) — 0230831 13631 —d13021
adj(A(rT) = | 621(611 — 833) + 623831 —813631 813621 ; (A.46)
0 0 0



013631 013631 X013631
adj(A(r3) = | 821(r5 — b33) + 623631 O21(r5 — 833) + 623631 X [021(r5 — O33) + b23631] |

631(r3 — d11) 831(rs — 611) X631 (75 — 611)
(A7)
where x = [r} — (611 + 621)]/631. By using (A.46)-(A.47) in (A.45) we obtain:
—013631 ) 613621 ‘2(0) (A.48)
631 7"2 — 611 — 621 X(O)

_ | 1621811 — 833) + 623031 ] L{vp, 7T} + 613631 LAy, 7T} — G131 Ly x, 7T}
=031 L{vp, 3t — O3 L{vv, 5} — [r3 — 611 — b L{vx, 75}
All results reported in the paper are based on the assumption that the shocks to the product

subsidy and government debt are permanent and unanticipated. This implies that the Laplace

transforms for these shocks take the following form:

5 - B B
Clipsh =2 c(B,s) = 20 _ B9 (A.49)
s s s
By using (A.36) and (A.49) in (A.48) the jumps in full consumption and the value of land can be
computed:
5 5 -1H)(1-9Q 1-— -1 -
K(0) = —61 |:u)K7'2 [P+ (¢ —1)( i €X)]+</)511 [p(1 —wk) ]] ip— (53* )B(oo)
¢r3(ry — b11) 2
(A.50)
~ 20 —1 - -1
V(0) = [%] §p + wrQpx [X(O) - <¢7) §p] : (A.51)
The expression for X (0) can be written in a very simple form. Starting from equation (A.50) we
obtain:
v _ wir3 [¢p+ (¢ — DA = Qpx)] + #d11 [p(1 —wi) — 1] — dwi (r3 — d11) ] .
X(0) = —63 —— ip
¢r3(ry — 611)

wrry (1= Qpx) + ¢611(1 —wk) p—1Y\ . wK§p+f3(oo)
—031 Gp— by |22

r3(r3 — 611) ¢ 3

(A.52)

Y

(5 o [ B

where in the final step we have made use of the fact that r3 is a root of the quadratic function
g(s) defined in (A.39):

wiry (1 —Qpx) + ¢611(1 — wi)
r3(rs — 611)

_531[ ]—1@

T;(T; — (511) + 631 [wKr; (1 — QE)() + (;5611(1 *w[()] =0



(r3)? = [611 — 631w (1 — Qpx)] 13 + 6118310(1 — wi) = 0 & g(r3) = 0.
By using (A.52) in (A.51), the following expression for the jump in the value of land can be derived:

- (wr(26—1)
V(O)_( ¢

WKSp + B(OO)

= (A.53)

) 5p —wi6319QEx [

4.2.1 Without bond policy

In section A.3 of the paper a number of inequalities for X (0) and V' (0) are stated. The inequalities
for X(0) can be proved by using (A.52) with B(co) = 0 imposed. The first inequality, X (0)/5p >

(p—1)/¢ > 0, follows immediately from (A.52) because 631 < 0. The second inequality, X (0)/5p <
1, is proved as follows.

X -1
O _ 21 Sk g s s (A.54)
Sp 1) r3

For the Cobb-Douglas case in the paper r5 > —831¢wx = (1 —vp)(611 — @) is guaranteed to hold
as 0 < yp < 1and r5 > 26;; — a (see Lemma 1). Hence, X(0)/5p < 1.
The inequalities for V(0) are proved as follows. We use (A.52) and (A.53), impose B(co) = 0,
and obtain:
3 [V(0)/wrc — X(0)

i = [T‘; + (531&)[((1 — QE‘X)] = [T‘; — ((511 — C!)] >0, (A55)

which shows that V(0)/5p > wix X (0)/3p > 0.0

The long-run results for full consumption and the value of land in the absence of bond policy

can be computed from equation (A.43) by setting B(co) = 0. The resulting expression for full
consumption can be written as follows:

1= (5525245 o

which shows that X (0)/5p > X (00)/5p. Similarly, we can use (A.43) and (A.53) to compute the

difference between the long-run and impact response in the value of land:

N 7(0) = wic [wx(qﬁ -1 (6 — C“)QEX] §p.

d(l-—wr) (1—-Qrx)rs
In view of the definition of Qgx in (A.27), Qrx < 0 for the Cobb-Douglas case and also for the
general case unless both 04 and o are very small. Hence, the expression in square brackets on
the right-hand side is certainly positive for the Cobb-Douglas case and V(00)/p > V(0)/5p. This
completes the proofs concerning X (0), X (co), V(0), and V(co) in the absence of bond policy.C]

V(00) — V(0) = (A.57)

4.3 Transition results

Since the shock administered at time ¢t = 0 is permanent and unanticipated, the transition path

of the state variables has the following form:

F(t) 0 F(c0)
V) | =t V) |+ [1 - e—h*t] V(o) |, (A.58)
X(t) X(0) X (00)

where h* is minus the stable root of A which represents the transition speed in the economy.
These expressions coincide with the expression in section A.3 of the paper.



5 Welfare Analysis

The welfare implications of the production subsidy can be derived in the manner suggested by
Judd (1982). The optimum utility level of the representative agent of vintage v at time ¢ is denoted
by A(v,t):

Av,t) = 100 log [X (v, 7)/Py(71)]exp [(ac + B)(t — 7)] dT. (A.59)
The Euler equation for the household, X (v, 7) = [r() — a]X (v, 7), implies that:
X(v,7) = X(v,t)exp {/tT[r(u) - a]dy] , T >t (A.60)
Substitution of this result in (A.59) yields:
Av,t) = /too [log X(v,t) + /tT [r() — a]du —log Py(7) | exp[(e + B)(t — 7)] dr
= Ax(v,t) +Agr(t) — Ap(t) (A.61)
where:
_ log X (v,t)
Ax(vt) = ——7— e (A.62)
Melt) = — [ b —alewl@+ ) -r)dr (A.63)
Ap(t) = /t log Py (7) exp [(+ B)(t — 7)] dr. (A.64)

The change in utility is calculated as dA(v,t) = dAx(v,t) + dAg(t) — dAp(t), with:

1 dX(v,t)  X(v,t)

dAx(v,t) = ot 8 X(uD) BT (A.65)
dAR(t) = (Oj‘f ﬁ> | el + - (A.66)
dAp(t) = /00 Py(r)exp[(a+ B)(t — 1) dr. (A.67)
The Laplace transforms of dAgr(t) and dAp(t) can be written in the following form:
TF E{fva"f'ﬁ}_ﬁ{ﬁs}
L{dARr,s} = (OéJrﬁ) ) , (A.68)
L{Py,a — L{Py,s
clanp, st = H Uysj(ﬂohg){ Uy} (A.69)

5.1 Existing generations

Existing generations are born before the policy shock occurs and have a negative generations
index, v < 0. For an individual we have that X (v,0) = (a + 8)[A(v,0) + H(0)], so that:
X(v,0) = [1 — ag ()] A(v,0) + ax(v)H(0), a (v)zLO)
) - H ) H ) H = A(’U,O) + H(0)7
where A(v,0) = dA(v,0)/A(v,0), X(v,0) = dX(v,0)/X (v,0), and H(0) = dH(0)/H(0). Aggre-
gate total consumption satisfies X (0) = (a + 5)[A(0) + H(0)], so that:
- H(O

X(0)=[1—wg| A(0) + werH(0), wy = A0) + 7O’ (A.71)

(A.70)

10



where A(0) = dA(0)/A(0). In the steady-state we have that X (v,0) = X (v,v)exp[—(rp — a)v],
implying:
(@+0)[A(v,0) + H(0)] = (a+B)H(0)exp[—(rr — )] (A.72)
= agv) =expl(rr —a)v].
Furthermore, we know that A(v,0) = A(0) for v < 0, i.e. the rate of change in the value of

individual assets equals the rate of change in the value of aggregate financial wealth. Combining
these equations, (A.70) is written as:

X(v,0) = A(0) + [ (v) Jwir] [5((0) - 21(0)] . (A.73)
Next, it follows from (A.69)-(A.68) that:

dAR(0) = lim sL{dAp,s} = (Off ﬁ) L{F, o+ B}, (A.74)

dAp(0) = lim sC{dAp, s} = L{Py,a+ B} (A.75)

The effect on welfare for existing generations (v < 0) can thus be written as:
(a+B)dA(v,0) = A©0) + an(v)/wn] [ X(0) = A©O)] rrLiF, o+ 8) (A.76)
—(a+ B)L{ Py, o+ B},
where the change in the value of financial assets that occurs at impact can be written as:

A(0) = (1/wi) [V(O) + B’(O)} . (A.77)

5.2 Future generations

The utility change for future generations is evaluated at birth, i.e. we compute dU (v, v) for v > 0.

First, we know that agents are born without financial wealth, A(v,v) =0, so that:
X(v,v) = (a+ B)H(v) = X(v,v) = H(v). (A.78)

From the aggregate counterpart, X (v) = (a4 8)[V (v) + E(v)F(v) + B(v) + H(v)], an expression
for H(v) is obtained:

H(v) = (1wn) [£(0) = [(1 = wm)fwrd] (Vo) + P(0) + Bw)) | (A.79)

The change in welfare of future generations (v > 0) is rewritten as:

(@t B)dA@w,v) = X(v,v)+reL=) [E{f’ 2t (ﬁjﬂf){ﬁ S}] (A.80)
(a+ et |Hloat fj;é){ﬁ“ H
The Laplace transforms of #(t) and Py () take the following form (recall that #(c0) — 0):
£l = 1O (A.81)
epesy = PO =Poo) | Poloo) e

s+ h* s
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This implies the following results:

N (e = T
ﬁ{PU,ZHr(ﬁOE;ﬂﬁ){PU,S} _ (E)ﬁ{ﬁwajtﬁ} (A.84)
_[1_ 1h] PU<o>ﬁPUh<oo>]
s s+ h* a+ O+ h*

Hence, the terms in square brackets in (A.80) can be written as weighted averages of the initial and
long-run effects of the respective variables. Since the paths of the variables themselves take the
same form, utility can also be written in terms of weighted impact and long-run effects. Indeed,
by using the solution paths for X (t), V(t), F(t), as well as (A.83)-(A.84) in (A.80), we obtain the
following expression for dA(t,t):

dA(t,t) = e " TdA(0,0) + [1 - e*h*t] dA(c0,00), t >0, (A.85)
where dA (oo, 00) is given by:
Cloo) - (1 —wp) |V(00) + F(0) + B(c0)
(a+ B)dA(o0,00) = X(oo) _ Py(o0) — " [ (A.86)
wWH WKWH

= X(o0) — Py(0),

and where we have used the steady-state version of (TA.2)-(TA.3) in the final step.

6 Bond policy

6.1 A suitable bond policy removes transitional dynamics

The impact effects in the presence of bond policy are given in (A.52) and (A.53). For convenience

the impact results are restated here:

F(0) = 0,

. 20— 1 ip+ B

70) = (M) Sp— wicba Oy | BI) | (A.87)

¢ 35
- ~1 ip+ B
%) = <¢_) — [w
¢ )

The long-run results with bond policy are given in (A.43) and can be rewritten in the following
fashion:

F(OO) _ ngp—l—B(OO)

N 1— WK '

- wir (20 —1 ~ wK(Q5—1) ngp—‘rB(oo)

o~ ¢—1Y\ . wrsp + B(OO)

X = [=— S e S B S

= = (5)e l S~ k)
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A comparison between (A.87) and (A.88) reveals that impact and long-run results coincide for the
respective variables if the bond policy takes the form B(0) = B(co) = —wgép, i.e. X(0) = X (c0),
V(0) = V(c0), and F(0) = F(c0) = 0 in that case. Since all transition in full consumption is
eliminated, the same also holds for the other variables. Indeed, by substituting the constant value
of X(t) = [(¢ — 1)/¢])5p in equations (A.25)-(A.27) and (A.30) we obtain:

Y(t) = nel(t) = (1/OE®) = (6 —1)/¢]5p > 0, #(t) = Cr(t) =0, (A.89)
Rut) = [@o-1)/dlsp >0, Wi = LIl
14+wrr
where £ = 1/[or — 0c (04 — 1)]. Note that for the Cobb-Douglas case, £ = 1.

6.2 A suitable bond policy removes intergenerational inequities

It is straightforward to show that a bond policy of the form B(0) = B(co) = —wgép not only
removes transitional dynamics in the macroeconomic variables but also eliminates all intergener-
ational inequities. The welfare effect on existing generations is given in (A.76). Using (A.77) and
(A.87) and imposing B(cc) = B(0) = —wkép shows that the generation-specific term in (A.76)
vanishes:

X(0) - A(0)

X(0) - (1/wr) [V(0) + B0)]

_ (%) §p— K%) §p— sP] = 0. (A.90)

Hence, all existing generations are affected by the shock in the same manner, i.e. dA(v,0) =
dA(0,0) for all v < 0.

For future generations the welfare effect is given in (A.85). It is straightforward to show that
dA(v,v) = dA(0,0) for all v > 0. In view of (A.85), all that needs to be done is to show that
dA(0,0) = dA(co, 0):

(a+B)dA(0,0) = X(0,0) +rpl{F,a+ B} — (a+ B)L{Py,a+ B}
= X(0) = (a+B)L{Pr,a+ 0} (A.91)
X (00) = Prr(00) = (a + B)dA(00, 00),

where we have used X(0,0) = X(0) in the first step, 7#(t) = 0 in the second step, and Py (0) =
Py (00) as well as equation (A.82) in the third step.

To evaluate the common welfare effect on all generations it suffices to evaluate dA(co, 00). By
using (A.86) and (A.88)-(A.89), and imposing B(co) = B(0) = —wxép, we obtain the required
expression for 7:

(a+B)r = X(o0) = Py(o0) = X(00) = 4(1 — 6c) E(00) — (1 =
_ [1%(100)](1”;‘”;;)5,)(1 (iﬁiﬁ)

(1—9)sp
(v<1+sp><1+wLL>)“ =781 = 60)) = (1 + sp) = (1 =)

- (Y- oe) -1, (A2

where we have used wr.r, = (1 —7)/[ve(1+ sp)] to simplify the expression and where we have used
§=1/[or —0c(o4 —1)] (see below (A.89)). Equation (29) in the text is obtained from (A.92)
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by setting o7 = 04 = 1, so that £ = 1 and ¢ = v,. Equation (30) in the text is obtained by
setting 7 = 0 in (A.92) and solving for sp.

7 Intergenerational welfare effects

In order to compute the intergenerational welfare effects in the most general case, it is useful to
write the variables in deviation from their respective egalitarian-optimum levels, as was done for
the state variables in equations (A.87)-(A.88) above. After some manipulation, it is possible to
obtain the following expression for the impact effect on the domestic interest rate:

621 [r3 — 621 + O31wK] |:CUK§P + B()

rpr(0) = , (A.93)

WKTS

where 5 — 6291 — d31wK = r5 — (611 — ) > 0. In a similar fashion, the impact and long-run effects

on the real exchange rate can be written as follows:

Em>——a<f§i)@wwm[ﬂ§ii§@ﬁ , (A.04)
wKT‘2
E(x) = ¢ <%) sp—Qpx l% (A.95)

A comparison of (A.94) and (A.95) reveals that sgn[E(c0) — E(0)] = sgn(—Qpx) in the absence
of bond policy. In the normal case, with £ > 0, Qgx < 0 and the long-run effect on the real
exchange rate exceeds the short-run effect (In the Cobb-Douglas case & = 1). The impact and
long-run effects on the wage rate can be written as follows:

o [ () (55 o S 2] o
e = o () (S5 )] et R e

A comparison of (A.96) and (A.97) reveals that sgn[I¥ (co) — W (0)] = sgn(ne — 1) in the absence

of bond policy. Hence, with a weak diversity effect (ne < 1) or under perfect competition, the

wage falls during transition, whereas the opposite holds with a strong diversity effect (ne > 1).
By using (A.94) and (A.96) in (A.29), the following expression for the impact effect on the

cost-of-living index is obtained:

o) = [ea-oo) (S5) ra-n e (=) (5] | (A.98)

831(ne — 1)(1 — g/))] wiép + B(c0)
K ne WKTS

- [W(l —0c)b21 + (1 —y)w

Not surprisingly, since both the impact results on the real exchange rate and the wage are
ambiguous, it is not possible to unambiguously sign the impact effect on the cost-of-living index.
The long-run effect on the cost-of-living index can be obtained by using (A.95) and (A.97) in

14



(A.29):

o = () [ (R
-t S 2

By deducting (A.98) from (A.99) and rewriting, we obtain the following expression:
[ 1 B 631]
¢(1-wk) 13

(7(1 —00)Qpx + (1 - V)W

Py(o0) — Py(0) =

) [ngp n B(oo)] . (A.100)

The first term in square brackets on the right-hand side is positive but the sign of the term in
round brackets is ambiguous. If Qpx < 0 and there are either strong diversity effects (ne > 1),
or labour supply is exogenous (¢ = 1), the term in round brackets is positive so that the cost-
of-living index increases over time, i.e. Pr(00) > Pr(0) in those cases. In general, however, no
unambiguous sign can be determined even for the Cobb-Douglas case.

By using (A.76)-(A.77) and (A.81)-(A.82), the welfare effect on extremely old existing gener-

ations can be written as follows:
TFF(O) ~

(a+ B)dA(—00,0) = (1/wx) [V(O) + B(O)] Sy LD (A.101)
(a5 e - Foo].

By substituting V(0) from (A.87), (A.93), and (A.99)-(A.100) into (A.101) and noting that B(0) =
B(c0), the following expression for dA(—oc,0) is obtained:

wKsp + B(OO)
3

(a+ B)dA(—0,0) = (o + )7 + Ty , (A.102)

where 7 is the common welfare effect on all generations in the presence of suitable bond policy
(see (A.92)) and where I'; is defined as:

15— b1 | 821(r3 — 21 + b31WK) (e —1)(¢—1)
" a+f . 1
X [TQ + (m) (r3 — 8319(1 w[()):| m (A.103)

We demonstrate below that I'; > 0 for the Cobb-Douglas case of the paper.
The welfare effect on newborns at the time of the shock can be written as follows:

(o + B)dA(0,0) = (a + B)dA(—0,0) + (1/wp) [X(O) — (1)wk) [V(O) + B(O)” . (A104)

By substituting V(0) and X (0) from (A.87) and noting that B(0) = B(cc), the terms in square
brackets on the right-hand side can be written as:

. ” - <r§+(531wK(1—QEX)> le§P+B(OO) . (A.105)

[X(0) = (1/wx) [7(0) + B(O) ok

*
Ty
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By substituting (A.105) in (A.104) and noting that 633wk (1 —Qgx) = —(611 — @), we obtain the
following expression for dA(0,0):

(o + B)dA(0,0) = (a + B)dA(—00,0) — ( : (A.106)

WKTS

s — (;511 - a)) legP + B(0)

which confirms that dA(0,0) < dA(—00,0) in the absence of bond policy (since the term in round
brackets is positive).
Equation (A.86) shows that the welfare effect on generations born in the new steady state can

be written as follows:

(o + B)dA (00, 00) = X (00) — Pyr(c0). (A.107)

By substituting X (co) from (A.88) and using (A.99), dA(co, 00) can be written as follows:

(o + B)dA(00,00) = (a + B) — T l% (A.108)
where I'; is defined as follows:
Ty =1+7€(¢—1+00) + (1—7)é <’7Enel> (%) (A.109)

We now prove that I's is positive for the Cobb-Douglas case discussed in the paper. With Cobb-
Douglas preferences, £ = 1 and 8¢ = v so that I's reduces to:

Ty =1+9(¢—1+vp) +(1—7)é <"€7;1> (%) (A.110)

Since ¢ > 1, 'y > 0 is implied if ne > 1, i.e. if there are strong diversity effects. Hence, to
complete the proof we only need to consider the case with ne < 1. In that case ¢ satisfies the
following inequalities:

1<p< 1 , 0< < ne. (A.111)
1 —ne ¢

Using these properties allows us to deduce that I'y > 0:

I, = 1+7(¢1+7D)(17)¢<1n€n6> (%)
> 14+9(@—1+4+7vp) — (1 —7)d(1 —ne)
> 14+9(¢—1+7p) — (1 —7) =76 +7p) > 0. (A.112)

Hence, I'y > 0 for the Cobb-Douglas case.l
The proof of I'y > 0 for the Cobb-Douglas case proceeds as follows. First, note that I'y in
(A.103) can be re-written by using the definition for I'y in (A.109):

(a + 6B+ h*)(TS — (521) + 691 [7‘5 + 5310.11((1 — QEX)]
(a+ B+ h*)wk
wic(1=T2) [ (55 ) + (@ + B)an
(a+ B+ h")wk

r =

(A.113)

W
(a+ B+ h)wk’
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Equation (A.39) implies the following useful results for 75 and h*:
T;h* = —(511(531¢)(1 — wK), 7’; —h* = 2(511 — Q. (A114)

By using these results in (A.113), and noting that 7§ + d51wx (1 — Qpx) = r5 — 611 + a, T4 can

be written as:

Ty = (a+B8+h")(ry—0621)+ 621(ry — 611 + ) + bq1wr(a+ 5 —611) (1 —T3)
= (7“;)2 +[B+2(a—611)]15 — b21(a+ = 611) + d31wr(a+ B —611) (1 —T2)
= (135)? +[B+2(a—611)]75 + (a— 1) (a+ B — 611) — dzwr(a+ B — 811)T2
= [r3— (611 — )] [r5 — (611 — o — B)] — dz1wk (o + B — 611)T2 > 0, (A.115)

where the sign follows from the fact that Ty > 0, 631 < 0, 611 < a+ 8 and 75 > 811 — « (see
Lemma 1). Hence I'y > 0 for the Cobb-Douglas case.l]

8 The Pareto optimal product subsidy

The Pareto optimal product subsidy, §p, is obtained by setting dA (oo, c0) = 0:

(a+B)(1 —wk) o 00) = L= N[mp — 1~ sp]
< V8P >dA( 00) = 1—v+ve(l+sp)

—(1+7vplwk. (A.116)

Solving the quadratic function for 1 4 §p:

. (A= [1+yp(1—¢)] 3
1+3p< T T >[\/1+Q3 1]>o, (A.117)

where ()3 is a positive constant:

q, = 2t p)ed =9 (A.118)
1=y [1+yp(1—e)]

Recovering comparative static effects from this expression is extremely tedious and unnecessary.

Instead, we use the information that (A.116) with dA(oco,00) = 0 imposed is in fact a maximum
value function. After some manipulations we can write the function determining the Pareto
optimal product subsidy as:
dA (00, 0) .
T dsp = f(8p.n,7p) =0, (A.119)
where f(.) is a function determining §p:

fGp.m,ap) = Qule(l—7)[nyp —1 - 3p]
—(1+7vp) X —€)(1+3p)[1 —v+ve(l+35p)], (A.120)
where {24 is a positive constant. The second-order condition for the maximization problem,

dA(00,0)/dsp = 0, is simply that df/dsp < 0 for sp = §p. The comparative static effects

on §p of n and yp are now a simple application of the envelope theorem:

o~ “offosel, —..  —1of/osl, .. (A.121)
Osp _ _ 0ffovp  _[ell—an—wicll—q el +p)]
87D - [8f/8SP]SP:§P ; - [8f/aSP]SP:§p > O’ (A122)
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where we prove that the numerator of (A.122) is positive by using the result f(sp,n,vp) = 0:

fGpmyp) =0 & en(l—7)—wk[l—7+7e(l+35p)] (A.123)
= €(1—7)[n—vp)+1+5p] +vpwk [l —v+ve(l+5p)] > 0.

Table A-1: Log-Linearized Version of the General Model

Vit) = eV (t) + e [/(8) - Ro(t)] (TA.1)
X(t) = [re — o) X() + r57() — (05 — ) fwic] [V () + F(t) + B(1)] (TA.2)
E(t) = rpi(t) (TA.3)
PR E@) = F(t) + (1-60) [(or — DE@) — Cr(t)] (TA4)
rp B(0) = L{T,rp} — (14 sp) [ﬁ{sP,rF} + (1 ipsp) ﬁ{ff,rp}] (TA.5)
L(t) =Y (t) + 5p(t) — W(t) (TA.6)
Rp(t) =Y (t) + 3p(t) (TA.7)
Y(t) =0cCp(t) + or(1—0c)E(t) (TA.8)
Op(t) = (1—0c)(oa — DE(t) + X(t) (TA.9)
Cr(t) = Cp(t) — oA E(t) (TA.10)
L(t) = wpr [W(t) - X(1)] (TA.11)

Y (t) = neL(t) (TA.12)

Shares:

wrr = (1 = L)/L, leisure/work ratio.

wk = R /Y, share of rental income in national income.

6c = Cp/Y, national income share of domestic consumption.

Notes:

(a) We have used the normalization E = 1 and B = F = 0 initially. The total (constant) stock of
land equals K = 1.

(b) Relationship between shares: wx = (1 —€)(1 + sp).
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