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This appendix contains the derivations for the most important results discussed in the text. Equa-

tions without the ‘A’ prefix can be found in the text itself.

1 Derivation of equations (17)-(18)

Since the production factors are mobile across firms, hiring production factors is simply a rental
decision, where the rental charges on labour and capital are denoted by Ry (7) and R (), respec-

tively:

Pr(7) n 71(7)

Rp(1) =We(T)Pe(r), Ri(7)=Pr(r)(1—717(7)) |R(T) +6 — Pir) T 1= (7

FEach firm thus faces the same rental charge on the production factors. Cost minimization, given
the technology (10), ensures that the cost function for all firms in the differentiated sector is
defined as:

TCY;(7), Ric(7), Re(7)] = [V (7) + f]'/* F7 [Ric(7), Ru ()],

where F*[.] represents the dual unit cost function corresponding to the gross production function
F], given in equation (10):

F* [Ri (1), Ri(7)] = <11Q[i_(;)>1% (Rf;_f))“ |

In view of the definition of the cost function, the following expression for the marginal cost of each
firm can be derived:

1 TC;(r)
MC;(1) = 2 (A1)
! An;(7) Y5(7)
Each firm sets its price equal to a markup, 4;(7), times marginal cost:
Pi(1) = p; (1) MC5(7). (A.2)
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By using (A.1)-(A.2), the profit rate, m;(7), can be written as:

Py(n)Y;(r) = TCy(r) _ Pi(n)Y;(r) — [Mgy(7)/my(7)] Ps(7)Y;(7)

R YeC 7C;(7)
Hj(T) - >\77j(7')
>‘77j (7) .

which coincides with equation (17) in the text. The zero profit condition follows from (18) in a
straightforward fashion.O

2 Proof of Theorem 1

We first construct the phase diagram in (Cr(t), K (t)) space under the assumption of free exit/entry
and a constant markup. Some useful relationships can be derived from (T1.4)-(T1.5):

v+ = v (5)=verr ().

©w—A
B Yit) 1 #1(t)
C (L) (B2 - = gy
0 - () () o <o

where 0 < ¢ =1 — x;(1 —€1) < 1. From (A.3) we can determine the behaviour of the investment
rate of interest, r;(t), as a function of K (¢). Under the assumption that 0 < ¢ < 1, we obtain:

A . . (17€L)Q - o 72[(75) - 00

A0 = i, (71_71@)“’5) il i (A-4)
. B 71(t) orr(t) A1 —€er)Q (144

wlm i) = {‘”1_71@)]’ aK@)—(ﬁ) K@ P <0 (A5)

Real consumption in terms of the investment price index is C;(t) and real debt is B;(t). The

equilibrium relations K'(t) = 0 and C;(t) = 0 may be written (for given B;(0) and 7;) as:

Cit) = Y(b) - 6K(t) = QK(#)'=° — 6K(8), (K(t) = 0 line), (A.6)
oy = 2etd) Klr_(;f)i O+ BrO] ) = 0 Tine). (A7)

The behaviour of (A.6)-(A.7) around K (t) = 0 is then:
Cr(t)] (=0 < K ()77,
K(t)'+? for B;(0) =0
Cr)le, -
1®le, -0 > { K(t)®  for B;(0) >0

The slopes of equations (A.6) and (A.7) for K(t) > 0 are:

aC (1) _1_ b s_1_a (XD

TR |, = (L~ POKO™ 0= 0-0) () o (A8)
and

oC(t) :C](t) (1—71)K(t) B K(t) 6r1(t)}>0

OK() |e, gm0 K0 [T 70K (D) + B0 m(®) —aok()] "
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Figure 1: Phase diagram

It follows from (A.8) that the golden rule capital stock K¢ is such that:

aC (1) 'K(ﬂ_o C0— (@)GR __6 (A.9)

K (t) K(t) 1—¢

The first expression in equation (A.3) may be rewritten as:

=1-75) [Tl(t) +6+ F—y ilg)(t)} . (A.10)

It follows from (A.9)-(A.10) that (for 7;(t) = 0) the golden rule rate of interest, r$#, can be
written as:

GR . Y
(I—ez) (%) = (-7 [rf+6] = 7(11 — (j))
- agr= L lel(lﬁ_)ﬁ) U, (A.11)

Equation (A.11) implies that limy, oo r§® = -6 <0 and r§# =0 < x; =1/(1 — 7). It follows
that, for 7; = 0, r¥# < 0 for all x; > 1. Hence, rr > o > r&%, and the steady state is dynamically
efficient.

The phase diagram in (Cr, K) space is drawn in Figure 1. The steady-state equilibrium is at
Eo, and the capital stock is KY B < KMGR <« KGR where KMEH ig the capital stock associated
with the modified golden rule, for which r; = «, and KY is the Yaari-Blanchard equilibrium
capital stock. By loglinearising the model around the stationary point Eg we obtain:

= A (A.12)

—f{(t) A= (6/wr)(we — @) —bwe Jwr
Cr(t) |’ —(rr—a)—¢(rr+96) rr—« ’



with w; =1 —we = I)Y = 6K/Y, we = C1)Y, K(t) = dK(t)/K, C;(t) = dCr(t)Cy, K(t) =
dK (t)/K, Cr(t) = dC(t)/Cy. For stability it is necessary and sufficient that the determinant of
A be negative. After some manipulation we obtain:

Al = —r*h* = — <i—¢> [rr —a+we(rr+6)] <0, (A.13)
I

so that | A |< 0 is guaranteed since we assume that ¢ > 0. From the saddle point property of the
equilibrium it follows that A has distinct eigenvalues —h* < 0 < r* (recall that | A |= —r*h* < 0).

The steady-state interest rate r; does not depend on x; or xo. This result is important in
some of the proofs below, and can be demonstrated as follows. By using the equilibrium equations
(A.6)-(A.7) and assuming that B;(0) = 0, we obtain an equation in Y/K:

Bla+B)(1 —1)K

rr —«

Y — 6K — =0&

(rr —a) (§—5> —Bla+B)(1—71)=0&

(25) () (4522000) () s
(A.14)

where we have used the fact that r; +6 = (1 —er)(Y/K)/(1 — 71) (see (A.3)) to get from the
second to the third line. The larger root of the quadratic (A.14) is the equilibrium output-capital

ratio:
Y - 1—7'] 5(1—€L)
K = 2(1—eL)[ 1, otet
§(1—er) 2 1 12
S i) —a (= ) 66+ @)~ Bt B)(1 - )
].—T[ ].—T]
1 51— er) 51— )\ 2
— 7] €L — €L
_ A Sl 274 4(1 —
S0 | 1o +04+a+ <6+a L ) +4(1 —er)B(a+ )
which implies that
Y  (04+a)1—7)) B
7 o > 0, for 8 = 0.
Since r1 + 6 = (1 —€1)(Y/K)/(1 — 71), the steady-state rate of interest is given by:
1] 8(1—er) 51— er))> 12
ritb=o |y srat [(6+a- 5 141 e)Ba+ B)
2 ].—T[ 1—7'[
(A.15)

Since (A.15) does not contain x; or x, the steady-state interest rate r; does not depend on these
parameters.



3 Proof of Theorem 2

The current value Hamiltonian is:

H=10gC; + (x¢ — x1)log N + A [Y = C; — 6K] — Ay [Y = N F(K, 1) + NX: f] .

Let N > NMIN_ Then the first-order conditions are:

oH _ -
(8—N <0 > "Ixe = x5 — Ay (xyNXf = (xp — AN F(K, 1)) < o,
, OH
N > NMIN (N _ NMIN Al
> NI, ( ) ;o (A.16)
OH _
OH o1
— —Ag = Al
(80[ > 1 k=0, ( 8)
HY\ .
(AK —alg = 2}{) A = (04 &) Ak — Ay N F (K, 1), (A.19)
(_aH — > = N AF(K,1) — NXi f, (A.20)
Ay
) OH )
K=———:) K=Y —-C; - K.
( i > !
The condition (A.19) can be rewritten by using (A.17) and (A.18) as
ALY NXtAFp(K,1) = G _ NXtAF (K, 1) — (a+6). (A.21)
Ak Cr
The expression on the left-hand side of (A.21) can be written as:
g[ rr—a, rp = N9 Fg (K, 1) — 6, (A.22)
I

which coincides with equation (23) in the text. Substituting (A.17), (A.18), and (A.20) into (A.18)
yields

[(Xc —Xr1) — 01_1 ()‘N;(f — (X7 — A)Y)] (N - NMIN) = 0=
[(xe —x1) = (Y/C) M0 = 1) = (xg = V] (N = N¥IN) = 0=
woxe + (1 —we)xr — A (N = N¥IV) =0, (A.23)

where we is the share of private consumption in national product and where 7) represents the
extent of increasing returns to scale at firm level due to the existence of fixed costs:

f+

t'<|>‘

i (A.24)



Equation (A.23) coincides with (24) in the text.
The optimal number of firms can be inferred from (A.23)-(A.24). For K given, production per

firm can be written as:

Y + f = N7'F(K, 1), (A.25)
where we have used (A.20). Equation (A.25) can be used to infer the following results:

di

li =1, — . A2

Jim =1, -5 >0 (A.26)
If there are very few large firms, fixed costs play an insignificant role and 7} goes to unity. The
more firms there are, the smaller are individual firms, and the more significant become fixed costs.
Hence, 7 rises with N.

We now distinguish two cases. First, for max[x;, xo] < A, the expression in square brackets
in (A.23) is negative for all N > 0, because wexe + (1 —we)x; < A and A > A. This ensures
that the optimal number of firms equals its lower bound N™IN_ The second case refers to the
situation with min[x;, x| > A. This implies that wexe + (1 —we)x; > A and, in view of (A.26),
that the term in square brackets in (A.23) is positive for N — 0. For a sufficiently small NM/N

an interior maximum occurs as f) rises with N.O

4 Proof of Theorem 3

Decentralisation proceeds as follows. First, by using the results in (A.22), the marginal produc-
tivity condition for capital in the social optimum can be written as:

rp+ 8= N Fr(K,1). (A.27)

By rewriting (T1.6), we obtain the following expression for the marginal product of capital:

NX AR (K1) = (1 — 1) (m +64 Tfﬁ) . (A.28)

By comparing (A.27) to (A.28) we see that, provided the number of firms and the capital stock
are at their optimal levels, the market yields the socially optimal investment rate of interest if
p[1 — 77] = 1. This implies that the socially optimal investment subsidy satisfies 7y = 1/0¢ or,
equivalently, 7r/(1 —77) = g — 1. The optimal ITC is thus directed solely at the removal of the
product market imperfection, incorporated in the mark-up p of price over marginal cost.

It remains to match the conditions determining the number of firms. The internal solution for

N statisfies, by equation (A.23), the following equality:

M) =wexe + (1 —we)x;-

In view of the definition of excess profit per firm (see (17) in the text), the socially optimal firm

size implies:

ML +7) =pe (1+7) [wexe + (1 —we)x;] = p, (A.29)
where 7 is the excess profit rate per firm in the symmetric equilibrium. By solving (A.29) for 7
we obtain:

—1) - 1— ~1
P (k—1) — [wexe + (L —we)xg }. (A.30)

wexe + (1 —we)x;



The three cases mentioned in Theorem 3 follow directly from (A.30). First, if x; = xo = p, then
7 = 0. Hence, no lump-sum firm transfers or taxes are needed. Second, if min[x;, xo] > u then
7 < 0. It is socially optimal to produce lots of varieties and subsidies to firms are required. Third,
if max[x;, x¢] < p then @ > 0 and it is socially optimal to choke off the number of varieties that

are produced in the market by levying lump-sum taxes on individual firms.O

5 Allocation effects of the investment tax credit

The effect of an investment tax credit on the equilibrium relations (A.6) and (A.7) is:

o 0
87’] K=0 k

a9, (€1 (82) +Ba+p)K

1L = — < 0.
37'[ C',I:(] T — Q@

It follows that, since dr;/0tr > 0, the C; = 0 schedule shifts down and to the right. Expanding
around the steady state, the response path to an investment tax credit satisfies:

Kit) | 0
Cr(t) ] -4 i l (t) ] ’ (4.51)

K(t)
Cr(t)

where A is given in (A.12) and 7(t) is the forcing term:

v(t) = v,71(t) = T1(t) — v Bi(t),

where v, =r;+é+rr—a>0and v5 = (r; —a)/[wrx (1 —77)] > 0. Taking the Laplace transform
of (A.31) yields:

R I )
z{éf,s}]‘(” A [é&(owz{v,s}]’ 432)

where £{x, s} denotes the Laplace transform of z with weighting factor s. Since is a predetermined
state variable, K (0) = 0. Because £{C},7*} is bounded, we obtain (see Judd, 1982):

C~'[(0) =—L{y,r"}, (A.33)

where 7* > 0 is the unstable characteristic root of A (see (A.12)). The general solution for
(K (t),C1(t)) is obtained by substituting the expression for C7(0) given in (A.33) into equation
(A.32):

L{K, s}

E{éj,s} = (sI=A)

0
L{y,s} = L{v,7*} 1 ' (439
K(t) sC{K, s}

We obtain for the long-run multipliers:
lim | - =lim N =-A"! 0 = (7(00)) o2 . (A.35)
t—oo | Cy(t) s10 | sL{Cy,s} y(00) r*h* 811

We postulate that the impulse in the ITC is a unit-step impulse:

%[(t) = 7~'](0) = %[(OO),t >0, (A.36)



and that the debt path is parameterised as:
Bi(t) = B;(0)e *»' + By(o0) (1 — e 48t) (¢4 > 0. (A.37)
Taking the Laplace transform of (A.36)-(A.37), we can derive the following result:

L{v, s} = L{y,r*}  3i71(0) 1

B 1 B;(0)-B 1
: (1, 1(o0) . 1(0) — B ()
s—r r s

s rifp  stig

Equation (A.34) can be rewritten as:

1 s—022 012 0

where 6;; is the ij-th element of the matrix A given in (A.12). The first equation can be rewritten

L{K, s}
ﬁ{é], S}

as:
o 612 £{7a S} - £{77 T*}
K = A.
LK, 5} s—l—h*[ s —r* (A.39)
s |mBie0) i) w8 [B:(0) ~ Bi() 1
- o e G T Py D IR
By inverting equation (A.39) we obtain the path for the capital stock:
N . 01278 [BI(O) - BI(OO)}

r*+€p

where K(o00) is given by (A.35), A(h*,t) is an adjustment term and T(h*,&p,t) is a transition
term. Equation (27) in the text is obtained by setting B;(0) = B;(co) = 0. The adjustment and

transition terms have the following properties:
Lemma A.1 Let A(aq,t) be a single adjustment function of the form:
Aoy, t) =1 —e

with oy > 0. Then A(aq,t) has the following properties: (i) (positive) A(aq,t) >0t € (0,00), (ii)
A(ag,t) =0 fort =0 and A(ay,t) — 1 in the limit as t — oo, (iii) (increasing) dA(oq,t)/dt > 0,

(iv) (step function as limit) As oy — 00, A(aq,t) — u(t), where u(t) is a unit step function.

PROOF: Properties (i) and (ii) follow by simple substitution. Property (iii) follows from the
fact that dA(aq,0)/dt = a1[1—A(aq,t)] plus properties (i)-(ii). Property (iv) follows by comparing
the Laplace transforms of A(ag,t) and u(t) and showing that they converge as oy — oo. Since
L{u,s} =1/s and L{A(au,t),s} =1/s —1/(s + a1) this result follows. O

Lemma A.2 Let T'(a1,a2,t) be a single transition function of the form:

e*“"zl_e*“l[
{ TTai—as for (e 5] # (6%}

T(aq, az,t) = oot for ay — a,
)

with a; > 0 and ag > 0. Then T(ay, o, t) has the following properties: (i) (positive) T(aq, aa,t) >
0t e (0,00), (i) T(ar,a2,t) = 0 fort = 0 and in the limit as t — oo, (iii) (single-peaked)
dT(ay, ap,t)/dt > 0 for t € (0,1), dT(ay, a9,t)/dt < 0 fort € (t,00), dT(ay,az,t)/dt = 0 for
t =t and in the limit ast — oo, and dT (o, a9,0)/dt =1, (iv) t= In(og /ave) /(a1 — ) if a1 #
and t = 1/aq if ay = ag; (v) (point of inflexion) d*T(ay, ag,t)/dt? = 0 for t* = 2t



PROOF: Property (i) follows by examining the three possible cases. The result is obvious if
a; = ag. If ap < (>)ag, then ag — ay > (<)0 and e~ 1t > (<) e~ for all t € (0,00), and
T(a, a2,0) > 0. Property (ii) follows by direct substitution. Property (iii) follows by examining
dT (o, ag,t)/dt:

dT (o, as,t) _ { % for a; # ag
dt B

1—agt]e @t for a; = ay.

Property (iv) is obtained by examining dT?(ay, ag,t)/dt?:

2 _ —aqt 2 _ —aqt

2 aje Y1 —qie 2
d“T(a, o9,t) _ e for ay # o
d*t —aq 2 — agt] et for ay = aa.

Hence, d®T(ay,ag,0)/dt? = —(a; + ag) < 0, and limy o, d?T(ay, ag,t)/dt2 = 0. The inflexion
point is found by finding the value of ¢ = t* where d?T(aq, ag,t)/dt?> = 0. O

The second equation of (A.38) can be rewritten as:

A _ s—bn ’6{778} _'C{/Vv’r*}

L{Crsh = s+ h* { s—r* ]

_ CiO) + Li{y.sh (0 —6n) [L{y.s} — L{yr*)

o s+ h* s+ h* s —r*

_G0) | vrFa(0) —apBiloe) 1 [B10) — Br(eo)]

T s+ h¥ s(s+ h*) (s+h*)(s+&g)

* “YBBI(OO) —vr71(0) h*
" = bu) r*h* s(s+ h*)
B [BI(O) - BI(OO)} 1 (AA1)
r*+&p (s+h*)(s+&p) '
By inverting equation (A.41) we obtain the path for consumption:

Lo i (611 +€5) 75 | Bi(0) — Br(0)
Cr(t) = Cr(0) [1 = A(R",1)] + Cr(c0)A(RT, 1) — T(h*,&p,t),

r*+&p

where C;(0) and C;(c0) are given by (A.33) and (A.35), respectively. Equation (28) in the text
is obtained by setting B;(0) = B;(co) = 0.

6 Welfare analysis
The utility of generation v at time ¢ can be written as:
Uv,t) = / log C(uv, 7)e (-t gr
t

= / [log Cr(v,T) + (xe — x) log N(7)] el B t=") gz (A.42)
t



The Euler equation for a household of vintage v reads Cr(v,7)/Cr(v,7) = (r; — @), which implies
the following path for Cy(v,7):

Cr(v,7) = Cr(v,t)exp [/ (rr(p) — @) du] ,
¢
so that (A.42) can be rewritten as:

vt = [ [1ogof<v,t>+<><cx»logww /

t

T

[rr(p) —af d,u} e_<“+5>(7_t>d7,

= Uc(v,t) +Up(t) + Ur(?), (A.43)
where
Uc(v,t) = 1ogC’1(v,t)/t el B E=T) gr — %, (A.44)
Up(t) = (xo—x1) / log N (7)e(@+9)(t=) g7 (A.45)
¢
Un(t) = / [ / (r1 (1) — ) du} et D) (=) g (A.46)
¢ ¢
Hence, equations (A.43)-(A.46) imply dU(v,t) = dUc(v,t) + dUp(t) + dUR(t), with
1 dO[(’U,t)
d t) = — A4
UC(”a ) Oé+ﬂ C](U,t) ) ( 7)
°° dN(T) B
dUp(t) = - AN(T) (atm)it-m)g
Up(t) (Xe = x1) . N e T
~ (xXe—Xr / N(7)ele =) dr, (A.48)
dUR(t) = el A=) g A4
Untt) = = | - (A.19)

Note that (A.48)-(A.49) satisfy the following properties:

L{dUp, s} = (x¢—x1) ﬁ{N’Zf?j+§){N’S}] : (A.50)
B Ty L{Fr, o+ B} — L{F, s}
L{dUg, s} = ((Hﬁ) [ Py P ] (A.51)

In order to calculate dUq (v, t), we must distinguish between existing and future generations.

6.1 Existing generations

Designating the time of the shock by tg = 0, existing generations have a non-positive generations
index, i.e. v < 0. We already know that Cr(v,0) = (o + )[As(v,0) + H(0)], where Hr(0) is the
initial steady-state level of human wealth, and A;(0,0) = 0 (newborns have no financial assets).

Also, A;(0) = (1 — 71+ sk )K(0), where sk is a once-off subsidy to capital owners. Hence, we can

write:
dC;(v,0) . . H1(0)
=(1- A H = . A.52
Cr(v,0) = Cr(.0) =(1—aps) Ar(v,0) + apsH;(0), aygs A,(0.0) + H1(0) (A.52)
Furthermore, we have that A;(v,0) = (1 — 77 + sx)K(v,0), so that
Ai(v,0) = WO _dsk —dri0) _ sk - )~ 4,0), (v <0), (A.53)

A[(U,O) ].—T[ ].—T[

10



where we have used the fact that sx = 0 initially, so that dsx = sk, and dK(v,0) = 0. For
aggregate consumption we know that:

Cr(0) = (a+0)[Ar(0) + Hi(0)] =

Ci(0) = (1= wm)Ai(0) +wiHi(0), w—ﬁ%'

From the steady-state consumption profile we know that:

(A.54)

Cr(v,0) = Cr(v,v)e” M=% (v <0), =
(@ +B) [Ar(v,0) + Hi ()] = (a+ ) [Ar(v,v) + H(0)] e 179" =
ags = 1T,

where we have used Aj(v,v) = 0. Hence, using (A.53)-(A.54), we can write (A.52) as follows:

Cr(v,0) = A (0) + (‘%S) [61(0) - /L(O)} , (v <0). (A.55)
Using the initial value theorem of the Laplace transform on (A.50)-(A.51), we obtain:

Wp(O0) = Jim sL{dUp, 5} = (xe —xi) £V, + 5}, (56)

dUR(0) = lim sL{dUp, s} = (a”—iﬁ> L{ir, o+ B} (A.57)

By using (A.47)-(A.49) and (A.55)-(A.57) we obtain the expression for the change in welfare of
existing generations (v < 0):
~ % ~ ~
(ot U0 = Ai0)+ (22 [¢40) - 4,0
+(a+B)(xe — XD LN, a+ B} +riL{F,a+ 3}, (A.58)

The infinite horizon model is obtained from this expression by setting 6 =0, r; = «, and ayg =

wr.

6.2 Future generations

Future generations have a generations index greater than tg = 0, i.e. v =t > 0. Their welfare
level is evaluated at birth, i.e. we compute dU (v,v). Starting with the generation-specific part of
utility, we know that C(v,v) = (a + §)Hy(v), which implies that:

Cr(v,v) = d(iffgf’o? = (g;@)dgf(%) = Cr(v,v) = Hy(v), (A.59)

where C7(0,0) is the initial steady-state level of consumption by a newborn. In the aggregate we
have that Cr(v) = (a + §)[Ar(0) + H;(0)] = (o + B)[(1 — 71(v)) K (v) + Br(v) + Hf(v)], so that:

Cr(v) = dg((og) ﬁ] Bi(v),  (A.60)

=wrHr(v) + (1 - wn) [K ) - ﬁ(”)} ' [

where we have used the fact that the initial debt is zero (B;(0) = 0) and B;(v) = r;dB;(v)/Y.
Equation (A.60) can be used to write H7(v) in terms of aggregate variables:

i) = (U wn) [K() + Bi(0)/ [on(1 = 1) = F1(v)]
H[(’U) = .

- (A.61)

11



Using (A.47)-(A.51), (A.59), and (A.61), we obtain the expression for the change in welfare of
future generations (v > 0):

Cr(v) = (1= wn) [K() + Br(v)/ lore(1 = 71)] = 71(v)|

(a+ B)dU(v,v) =

HatB) (xo - x) £t | A - s fj+§){N’ S}] (A.62)
1 ,C{’F],Oé—f—ﬁ} —,C{’F[,S}
ik [ s—(atp) ]

Obviously, (A.58) and (A.62) coincide for v = 0. This can be easily demonstrated by noting that
B;(0) = sgwi, and K(0) = 0. By comparing (A.58) and (A.62) for v = 0, the difference amounts
to:

A;(0) + 7,(0) — wK?ll(i))T]) - S_KTI B wKS(Iiw—Kn)

207

where we have used (A.53).

7 Derivation of equations (40) and (A.68)

Equation (A.62) can be rewritten in the more useful form of (40) (without bond policy) and
(A.68) below (with bond policy). Since (40) is a special case of (A.68), obtained by setting
B;(0) = Br(oo) = 0, we consider the derivation of the most general case. By using the path for
the capital stock as given in (A.40) we can derive that:

L{K,a+ B} — L{K,s}
s—(a+p)

(é)ﬁ{k¢1+ﬁ} (A.63)

N ( h* >[ K (0) Qe [31(00)713’1(0)} }
s

s+ h*) a

at+B8+h (a+B8+h)(a+8+Eg)
1 Quc | Br(00) — B1(0)]
(emme) [

where Q is defined as:

R s e R

Qp = — Ypb12 bwe(rr — a)

Note that (A.63) contains the Laplace transforms of unity (= 1/s), of an adjustment term A(h*,t)
(= h*/[s(s+ h*)]), and of a transition term T(h*,&g,t) (= 1/[(s+&g)(s + h*)]). This makes the
Laplace inversion of terms involving (A.63) very simple.

Since N(t) = (1 — ez)K(t) and (with an instantaneous ITC introduction) 7777(t) = (r; +
8)[~¢K (t) +71], the terms in square brackets involving N that appears in (A.62) can be rewritten

12



as:

L{N,a+ B} — L{N,s}
s—(a+0)

G) L{N,a+ B} (A.64)

h* N(x) — (I—e)Qk [BI(OO) - BI(O)]
" <8(8+h*)> atf+h (atB+h)(a+p+Ep)

. (1— €)% [Bf(oo) 4?,(0)}
e e

and, using r;77(0) = (rr + )77,

. L{h,jjzﬁ’o};;ﬁﬁ)){ﬁ,sw _ <é> riLl{n o+ B)+ <ﬁ) (A.65)

>< [7’1 Frloo) ~ 7 (0)] | Hr1 + 81 [Br(o0) ~ By (0)

o+ 6+ h* * (a+B+h*)(a+B+E&g)

| orr +8)Qus | Bi(o0) ~ Bi(0)]
‘(<s+h*><s+53>> a+B+Ep

Equation (A.62) can be used to derive the expressions for dU (0, 0):

C1(0) = (1 = wn) | Br(0)/ [wic(1 = 1)) — 1]
(a+ B)dU(0,0) = o
+(a+B) (xe — x1) L{N,a + B} + ri L{Fr, o+ G}, (A.66)

and dU (o0, 00):
Ci(o0) = (1 —w) [K(00) + Bi(o0)/ [wic (1 = 1)) = 71
(a+ B)dU (o0, 0) =

Hat ) e =) | g |+ |2, (67

By substituting the paths for consumption, the capital stock, and debt into (A.62), using the

Laplace inverses of (A.63)-(A.65), and collecting terms, the following expression is obtained:

dU(t,t) = dU(0,0)+ [dU(co,00) —dU(0,0)] A(R*,t)
Q8 (Ep) [ Bi(0) — Bi(oo)| T(H*, & .1, (A.68)

where Qp(£g) is:

_ gl t+é&p ol —wna)] (1 -—wn)lz—h)
(a + /B)QB(gB) - wH(r* + fB) wHwK(l _ TI)
L lla+ B)xo = x)(A —€r) = ol + )] (A.69)

a+B+¢&p

In the absence of bond policy, B;(0) = Br(cc) = 0, the transition term T'(h*, &g, t) drops out of
the various expressions, and (A.68) collapses to (40).

13



8 Proof of Theorem 4

Theorem 4 can be proved by making use of (A.58) and setting 8 =0, r; = «, and ags = wy and

deleting the generations index:

adU(0) = Cr(0) + al{ir,a} +a(xe — x7) LIN, o}
= al{Cr,a}+a(xc — x7) L{N,a}. (A.70)
The following results can be derived for the infinite horizon case:
x +6\ .
al{Cr,a} = (Oil—l— h) 71, (A.71)
~ B bwe(l—ep)(a+06)\ .
al{N,a} = ( o (ot ) T (A.72)
By substituting (A.71)-(A.71) into (A.70) we obtain:
(a+ 67 6(1—¢) B B bwe (1 —er)
adU (0) < ot i > [ o et e —xi) —-
a+9)
= (LTI - - 1 e - ) (- T, (A73)

where we have used the fact that under infinite horizons 6(1 — ¢)/wr = x;(a + §)(1 — 77) and
6(ler)/wr = (a+ 6)(1 — 71) in the final step. Since, for 7; = 0, the welfare effects collapses to:
(Oé + 5)27’[

o) e tvo = 1)+ (1 =) (=] 20, (A7

dUO)], 0 = (
where we have used the fact that x; > 1 and x» > 1. Equation (A.74) shows that the optimal
ITC, denoted by 773, is non-negative, and is strictly positive if either x; > 1 and/or x > 1. By

setting adU(0) = 0 in (A.73), the optimal ITC can be calculated as:

xrtwelxe =xp) =1 _ (A-wo)lxy =1 +wolxe =1
X1 +we (xe — Xx1) (1 —we)xr +woxe

T =
It can also be expressed in a slightly more conventional form:

(1?*) (1-we)(xs —1) +welxe — D).

Tr

This coincides with the expression found in Theorem 4. O

9 Proof of Theorem 5

In order to prove the various components of this theorem, it is useful to first state and prove the

following Lemma.

Lemma A.3 Let 71 = 0 initially and define f(s) = |sI — A|. The unstable characteristic root
satisfies: (i) if (1 —e€r) < (v/5—1)/(y/5+1), thenr* >rr+ 6+ rr —a; and (i) r* > r; + 5.

PrOOF: In order to prove (i) r* > (r; + 6 + r; — «), it is sufficient to show that f(s) =
|sI —A] <0 for s = (r; + 6 +rr — ). We can rewrite (A.13) by using 77 =0, we =1 — wy, and
6/wr=(rr+6)/(1 —er):
rr+6+r;—a

1—¢p

Al = —r*h* = —p(r; + 6) -6l <0. (A.75)
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Using this result, the characteristic polynomial, evaluated in s =r; + 6 + r1 — «, equals:

flri+é6+rr—a)=(r+6+r;—a) [7’1+6+7’1—a—(1—¢) (i>+6—m+a] +|A]

wr

].—GL

M}

].—GL

_ wq+®{ﬂxﬂ“f+®+5¢<m+6éﬂ

+w1w[0xa&z+®+6

= (rr+9) [5+<1—ﬁ> (7’1+5)+5¢}

- a) [(1 _ L) (ry + ) +5]

176[1

S [ (LTS PR R S

tor-a[(1- 2 ) er a4

1—€L

= (rr+9) Kl 1_1€L)TI+ ((QXJ)(1€<Ll)2_tL()1€L)€Lé)é]

(e

i el

= (rr+9) Kl
+(rr — ) [(FL) (7’1+5)+5] :

1—€L

].—GL

Since 7 is independent of x j, this expression takes its maximum for x; = 1. Using the factorisation
(I—er)?+er(l—er)—€3 =(1—3(1—/5)er)(1 — (1 + \/5)er), this gives:

>7,[+ <(1 EL)Qlee_L(elL) €r) 6%) 5]

frrestr-a) < oo [(1-
—

+(r; — @) [(1 - L) (rr+9) +5}

17€L
< 0,

for 1 — 11+ /5)er, <0 1—ep < (v5—1)/(v/5+1) ~0.382.
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The result (ii) 7* > 7y + B is proved in a similar fashion. The characteristic polynomial,

evaluated in s = r; + (3, equals:

fri+B8) = (ri+5) 7“1+ﬁ+7“1(1<f))<§[>+5(1"1a)]+A
= (ri+B)[a+B—x;(ri +6)+ 6]+ [x;(rr+6) —6](r1 — @)

2 g1+ ) + (s — )

= Dl 8) =8l —a— (ot B rila+ )~ Ly 1 6)
= (@4 B) [ 48— (i +8)] - 5‘3“20 (s + )

- o bdwe

- (Oé+ﬂ)(7’[+6) |:1 X1 (OZ+,6)W[:|

This establishes that r* > r; 4+ 3. This completes the proof of Lemma A.3. O
Part (i) of Theorem 5 is proved as follows. In the absence of bond policy, A;(0) = —#; and
equations (33)-(36) in the text predicts for existing generations (v < 0) that:

0[dU (v, 0)] <(r — a)elr—a

(a+ f) =5 = = ) (C10)+74]

WH

which shows that members of younger generations are better off than older generations if and only
if C7(0) + 77 > 0. From equation (29) in the text we find that:

C’[(O)Jr%]: <T (TI+6+TIQ)>7'1>O,

r*

where we have used part (i) of Lemma A.3 to determine the sign.
Part (ii) of Theorem 5 can be proved as follows. It is possible to derive that:

< 1 —er)b127,71

N(o0) = (1 — ) K (00) = ! e , (A.76)
riF(00) = (r +8) [~9R (o0) + 71| = 00(rs +f2§;f — o) (A.T7)
Crloe) = (1 —wom) [ (oo) — 7] = el O 202 (0 2 DT [t BT (g )

By substituting (A.76)-(A.78) into (A.67) (with Br(cc) = 0 imposed) we obtain:

o7y
(a + B)dU (00, 00) = =T
where I'; is defined as:
o+ B)r*h*
o= s+ é) -6 (ot g) - 5T
(UH<7‘[ + 5)

—b1owaYr(Xe — x7)(1 —€r) + Sp(rr — ).

a+p
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By noting that —(a+ 8)/612 = 1 —wg = (r1 — )/B, b1owg =a+B+6—(rr +6)/(1 —€r),
¢ =1—x;(1—e€r), and using the definition of r*h* in (A.75), we can rewrite I'y as:

1—c¢

twh [[1 —xr(l—ep)] e _ao;)(;] : 5)]

—wr(Xe = xp) [vren(rr + 6er) +6(1 —en)(rr — )] = [1— x;(1 — €£)] 8(r1 + 6).

P = oy (T2 —0) + (e~ 7o ) 00+ 90+ 1= xel = )] 80 +9

(A.79)

The partial derivatives of I's with respect to x; and x can be calculated from (A.79):

g—ij = 6(1—¢€p) [WH(T[ —a) (1 - Z:g) + (rr + 5)} +wyyren(ry +8eg) >0,
or
(9—2 = wpv(1—e€r)(r; +der) >0,
Xc
Hence, a lower bound for I'y is reached for x; = xo = 1, so that (using v; =r;+6+r;r — @)
Lo > wrlrr+6+r—a)rr +8es(rr +6)(rr —a) [awfﬁ - %]
rr—a 1 rr— o 1
= (1= 6 - ) 8)(r; — _ _ 2
< 3 ) (ri+é6+rr—a)yrr+ ber(rr +6)(rr — o) [oz—l—ﬁ Ha 1 ) ﬁ}
_ a+677’1 rr
< 3 ) (ri+6+rr—a)ry—ber(rr +6)(rr — a) [,5'(04—&-,6’)} .
We must first provide an estimate for §(r; — a)). The model solution satisfies:
rr+6
g(ry) = (rr — @) [11 i 5} — Bla+p)=0. (A.80)
It follows that
6(5(7"] - Ol) 617 5€L (TI _ Oé)(Q’r’] o a)
gorr — ) . _ orr _ -~ 1_ _ .
98 i a+685 (r1 = o) rr+6ep +rr —« 7’1+66L+7’1—a>0

Furthermore, from (A.80) we see that lim s_,oo6(r; — ) = B(a+ B)(1 — €1) /€. Hence

S -0y < B0 E A= e1)

and

rr

o+

(a+B—rp)(rr+6+r;—a)yry —ber(rr + 6)(rr — )

>rif(a+8—r)(rr+6+rr —a)— (1 —er)B(rr + 8)]

=rr[(a+Ber —r)(rr+6)+ (a+ B —rr)(rr — o)].

We have to show that r; < o+ fer < wgyg > 1 — €. To this end, substitute r; < a + Ber, into
(A.80). This yields

af[2er, — 1]+ 5 [¢2 + e, — 1]
].—GL

gla+ Per) = — Boer

17



>aﬂ[QeL—l}—BQ[l—%(l+\/5)eL] [1-1(1-V5)e] S 0eloep < Vo1
1—¢y V5 +1

Furthermore, for r; = a, (A.80) shows that g(a) < 0 for 8 > 0. This proves that the larger root
of (A.80) must be between « and a + Ber. This implies that I's > 0 and completes the proof of
part (ii) of Theorem 5. O

10 Debt policy

The simulations reported in Table 2 in the text are performed as follows. It is assumed that the
policy maker is able at time ¢ = 0 to choose a path of debt that is parameterized as in (A.37). At
time ¢ = 0, the policy maker makes a discrete adjustment to its debt position, e.g. by providing
a subsidy to capital owners (in which case B;(0) > 0). After that, the government flow budget
restriction (equation (T1.3)) and (A.36) together imply a path for lump-sum taxes, T7(t), which

affects the welfare of present and future generations:

0) = B o)+ (52 ) (Bi(0) = Br(00)) [1 = A€ )] + (1 = we)r.

Tr

With a positive birth rate Ricardian equivalence does not hold and debt has real effects. Equation
(A.35) implies that the long-run results on the capital stock and consumption are equal to:

oo w8 —a)h - [ o) lex(1 - )l Br(o<)|
(00) = Plrr —at+we(rr +9)) '
i (we =) [(rr + 6+ — a)Fs = [(rs = @)/[wic(1 = 7)) Br(0)]

dlrr —a+we(rr +90)]

The transition path taking the economy from the old to the new equilibrium is given by (A.37)
and (A.38) which can be written as:

bwe(rr — o) - B .
o) [B10) - By (o) T8 €50
Cr(0)[1 — A(h*,t)] + A(h*,)Cr(o0)

(=€ +8we = D)/Cd\ 5 o)~ Broo .
< wr(l—T17)(r* +¢p) ) [B[(O) Bi( )} T & 1),

where T'(h*, £ 5, t) is a single transition term (see Lemma A.2), and the initial jump in consumption
is equal to (see (A.33)):

Cr(0) = (—TI+6+TIQ>%I

P

() () o+ (20 ) B s

The welfare effects on current and future generations are also affected by the presence of debt

K(t) = A(h*,t)f((oo)(

Q
—~
~
~—
I

policy. The welfare path of current generations is still given by equation (33) in the text, but the

change in the value of the capital stock and the Laplace transforms for the rate of interest and
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the number of firms are all affected by the parameters of the debt path:
h* ~
L{Fj,a+ 0} = <ﬂ> X [?I qb—K(oo)

ri(a+ B) B atBrm

o e e A
et = (55) [

e s s e LR
Ar0) = iKT, ST % - (A.84)

where sk is a once-off subsidy to capital owners aimed at compensating them for the capital loss
they suffer as a result of the introduction of the ITC.

For future generations, the (change of) utility dU(v,v) can be written as in (A.85)-(A.86).
With the aid of equations (33), (A.68)-(A.69), and (A.81-(A.84), it is possible to show that the
policy maker can devise several Pareto-improving policies.

Under the egalitarian policy the policy maker must select the right path for debt (or, equiva-
lently, for lump-sum taxes), in order to spread the efficiency gains (or losses) equally over all ex-
isting and future generations. The policy maker has three instruments, B;(0) (which is regulated
by the once-off subsidy s ), Br(cc), and € g, with which to distribute the common (endogenously
determined) utility gain, dU, to all generations (or loss, if dU < 0). First, very old generations
must be given a subsidy such that they gain in net terms:

AU = dU(-o0,0) <
SK

W = e F Ll e+ B} (e B)(xe — )N o+ )

where we have used (33) (with v — —oc0), and (A.84). Second, all existing generations must be
equally well-off. In terms of (33), this implies that the generation-specific term must be neutralised:

dU(v,0) = dU < [C*I(O) — Ar0)] =o0. (A.85)

The policy maker has the instruments to influence the initial jump in consumption. In view of
(A.81), an appropriate combination of £z, B;(0), and Bj(co) can be used to ensure that (A.85)
holds. Third, the generations born in the new steady state must also gain dU:

Cr(o0) = (1 - wn) [K(OO) + [1/[wi (1 = 71)] Br(o0) — 71

WH

(a+ B)dU (o0, 00) =

+ry <7;I(;_>Oﬁ)> + (xo — x1) N(0)
= (a+B)dU. (A.86)

In Table 3 we have reported such egalitarian policies for different values of 7; and 3.
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