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A.1. The Three-Stage Solution Method

The optimisation problem faced by the representative consumer can be solved in three stages. In

step 1 the path of full consumptionX(τ) is solved. In step 2 full consumption is allocated between

its componentsC(τ) and 1-L(τ). Finally, in step 3,C(τ) is allocated over the different varieties of

the differentiated product,Ci(τ).

Stage 1.

Define the ideal cost-of-living index asPU(τ):

where U(τ)≡U[C(τ),1-L(τ)]. In the first stage the following optimisation problem is solved for

(A.1a)PU(τ)U(τ) X(τ),

τ∈[t,∞).

This leads to the following first-order conditions:

(A.1b)

Max
{ U(τ)} ∞

t
⌡
⌠
∞

t

logU(τ)expα (t τ) dτ

s.t. dA(τ)
dτ

r(τ)A(τ) 1 tL(τ) W(τ) T(τ) PU(τ)U(τ).

whereλA(τ) is the co-state variable of the flow budget restriction. The integrated (life-time) budget

(A.1c)U(τ) 1 λA(τ)PU(τ), τ∈ [t,∞),

(A.1d)dλA(τ)

dτ
[α r(τ)] λA(τ), τ∈ [t,∞),

restriction (with a NPG condition imposed) is:

whereH(t) is defined as:

(A.1e)

A(t) H(t) ⌡
⌠
∞

t

PU(τ)U(τ)exp










⌡
⌠
τ

t

r(µ)dµ dτ

⌡
⌠
∞

t

λA(τ) 1exp










⌡
⌠
τ

t

r(µ)dµ dτ,

The path ofλA(τ) is described by (A.1d) which can be solved to yield the following:

(A.1f)H(t) ≡ ⌡
⌠
∞

t

1 tL(τ) W(τ) T(τ) exp










⌡
⌠
τ

t

r(µ)dµ dτ.
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Using (A.1g) in (A.1e) yields the following:

(A.1g)λA(τ) exp










⌡
⌠
τ

t

[r(µ) α]dµ λA(t), τ≥ t.

But PU(t)U(t)≡X(t)=1/λA(t), so that (A.1h) can be written for periodt as follows.

(A.1h)
A(t) H(t) 1/λA(t) ⌡

⌠
∞

t











exp










⌡
⌠
τ

t

[α r(µ)]dµ

1

exp










⌡
⌠
τ

t

r(µ)dµ dτ

αλA(t)
1.

Note that equations (A.1a) and (A.1c-d) can be combined to obtain (T1.2) in Table 1 of the paper.

(A.1i)X(t) α A(t) H(t) .

Stage 2

Full consumptionX(t) is now allocated over consumption of the composite differentiated good

(C(t)) and leisure (1-L(t)).

This implies the following expression:

(A.2a)

Max
{ C(t),1 L(t)}

U(t)






ε

1
σCM

C C(t)

σCM 1

σCM (1 εC)
1

σCM 1 L(t)

σCM 1

σCM

σCM

σCM 1

s.t. C(t) 1 tL(t) W(t) 1 L(t) X(t).

Substituting (A.2b) into (1c) yields the expressions forL(t) and C(t) in terms of full consumption

(A.2b)C(t)










εC

1 εC

(1 tL(t) )W(t) σCM 1 L(t) .

X(t).

(A.2c)L(t) 1
(1 εC) (1 tL(t))W(t) σCM

εC (1 εC) (1 tL(t))W(t) 1 σCM

X(t),
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The expression for the true price index is obtained by substituting (A.2c-d) into the

(A.2d)C(t)
εC

εC (1 εC) (1 tL(t))W(t) 1 σCM

X(t).

instantaneous utility function (1f) and noting (A.1a):

Equations (A.2c-d) are reported in Table 1 of the paper in (T1.7)-(T1.8).

(A.2e)
PU(t) εC (1 εC) W(t)(1 tL(t))

1 σCM

1
1 σCM.

Stage 3

The agent now choosesCi(t) such that the following static maximisation program is solved.

Straightforward manipulation yields the demand functions for the differentiated commodities by the

(A.3a)Max
{ Ci(t)}

N(t)αC











N(t) 1
N(t)

i 1

Ci(t)

σC 1

σC

σC

σC 1
s.t.

N(t)

i 1

Pi(t)Ci(t) P(t)C(t).

agent:

whereP(t) is defined as:

(A.3b)
Ci(t) N(t) (σC αC) αCσC











Pi(t)

P(t)

σC

C(t), i 1,...,N(t),

Equations (A.3b-c) are reported in the paper in (1g) and (1e), respectively.

(A.3c)
P(t) ≡ N(t) αC











N(t) σC

N(t)

i 1

Pi(t)
1 σC

1
1 σC

.
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A.2. The Optimisation Problem for a Representative Firm

The representative firmi aims to maximise (3b) subject to (3c-d) and (3a). The current-value

Lagrangian is defined as follows.

where the price-elastic demand facing firmi is defined asYi
D(τ)≡Ci(τ)+Ii(τ)+Gi(τ), and wheresP is

(A.4a)

(τ) Pi(τ) (1 sP)Y D
i (τ) W N(τ)Li(τ) PI(τ)Qi(τ)

λK(τ) Qi(τ) δi(τ)Ki(τ) λY(τ) F(Li(τ) ,Ki(τ)) f Y D
i (τ) ,

an ad valorem product subsidy to be used below in section A.3 to show how the first-best

optimum can be decentralised in some cases.

The control variables arePi(τ), Li(τ), and Qi(τ), the state variable isKi(τ), the co-state

variable isλK(τ), and λY(τ) is the Lagrange multiplier for the demand restriction. The first-order

necessary conditions are:

Equation (A.4b) implies thatλK(τ)=PI(τ). Equation (A.4d) can be used to solve forλY(τ) in terms

(A.4b)∂ (τ)
∂Qi(τ)

0: PI(τ) λK(τ) 0,

(A.4c)∂ (τ)
∂Li(τ)

0: W N(τ) λY(τ) ∂F(τ)
∂Li(τ)

0,

(A.4d)∂ (τ)
∂Pi(τ)

0: (1 sP)Y D
i (τ) Pi(τ) (1 sP) λY(τ)











∂Y D
i (τ)

∂Pi(τ)
0,

(A.4e)∂ (τ)
∂Ki(τ)

λ̇K(τ) Rj(τ)λK(τ): λ̇K(τ) Rj(τ) δj(τ) λK(τ) λY(τ) ∂F(τ)
∂Ki(τ)

,

(A4.f)K̇i(τ) ∂ (τ)
∂λK(τ)

: K̇i(τ) Qi(τ) δj(τ)Ki(τ).

of the mark-up, µi(τ), and the price chosen by the firm:λY(τ)=Pi(τ)(1+sP)/µi(τ). Hence,λY(τ) has the

interpretation of marginal cost. Substituting these expressions forλY(τ) and λK(τ) into (A.4c) and

(A.4e) yields the marginal productivity conditions:

(A.4g)∂Yi(τ)

∂Li(τ)











εi(τ)

εi(τ) 1











W N(τ)
(1 sP)Pi(τ)

,
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In the absence of a product subsidy these equations coincide with (3e-f) in the text.

(A.4h)∂Yi(τ)

∂Ki(τ)











εi(τ)

εi(τ) 1











PI(τ)

(1 sP)Pi(τ)











R(τ) δ
ṖI(τ)

PI(τ)
.

Profit of firm i is defined as total revenue minus payments to the production factors labour

and capital:

Under free exit and entry of firms, profits of all active firms go to zero,Πi(τ)=0. The gross

(A.4i)Πi(τ) ≡ Pi(τ) (1 sP)Yi(τ) W N(τ)Li(τ) PI(τ)










R(τ) δ
ṖI(τ)

PI(τ)
Ki(τ).

production function is homogeneous of degreeλ:

By substituting the marginal productivity conditions (A.4g-h) into (A.4i) and using (A.4j), we can

(A.4j)∂F(τ)
∂Li(τ)

Li(τ) ∂F(τ)
∂Ki(τ)

Ki(τ) λF(Li(τ) ,Ki(τ)) λ Yi(τ) f .

obtain the following expression for profit of an active firm:

Since the term in round brackets on the right-hand side is positive, the zero profit condition is:

(A.4k)Πi(τ)










Pi(τ) (1 sP)

µi(τ)
µi(τ)Yi(τ) λ Yi(τ) f .

where ηi(τ)≡(f+Yi(τ))/Yi(τ) measures (local) internal scale economies due to the existence of fixed

(A.4l)µi(τ)Yi(τ) λ Yi(τ) f ⇔ µi(τ) ληi(τ),

costs (Rotemberg and Woodford 1995, pp. 251-3).
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A.3. Proof of Proposition 1

The current value Hamiltonian for the first-best optimum is:

Government consumption cannot be negative,i.e. G(τ)≥0. Then the first-order conditions are:

(A.5a)
(τ) εC logC(τ) (1 εC) log1 L(τ)

λK(τ) Y(τ) C(τ) G(τ) δK(τ) λY(τ) Y(τ) N(τ)αC f N(τ)αC λF(L(τ) ,K(τ)) .

By using (A.5d-e), condition (A.5g) can be re-expressed in terms of the following time profile for

(A.5b)







∂ (τ)
∂N(τ)

0: λ̂Y(τ) N̂(τ) 1 αC f N̂(τ)αC (αC λ) N̂(τ)αC λ F L̂(τ) ,K̂(τ) 0 ,

(A.5c)







∂ (τ)
∂G(τ)

≤0: λ̂K(τ) ≤ 0, Ĝ(τ)≥0, λ̂K(τ)Ĝ(τ) 0 ,

(A.5d)







∂ (τ)
∂Y(τ)

0: λ̂K(τ) λ̂Y(τ) 0 ,

(A.5e)







∂ (τ)
∂C(τ)

0:
εC

Ĉ(τ)
λ̂K(τ) 0 ,

(A.5f)







∂ (τ)
∂L(τ)

0:
1 εC

1 L̂(τ)
λ̂Y(τ) N̂(τ)αC λ FL L̂(τ) ,K̂(τ) 0 ,

(A.5g)







λ̇K(τ) αλK(τ) ∂ (τ)
∂K(τ)

λ̂K

.
(τ) (α δ) λ̂K(τ) λ̂Y(τ) N̂(τ)αC λFK L̂(τ) ,K̂(τ) ,

(A.5h)










∂ (τ)
∂λY(τ)

0: Ŷ(τ) N̂(τ)αC λ F L̂(τ) ,K̂(τ) f N̂(τ)αC,

(A.5i)









K̇(τ) ∂ (τ)
∂λK(τ)

: K̂
.
(τ) Ŷ(τ) Ĉ(τ) Ĝ(τ) δ K̂(τ).

consumption:
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where r̂(τ) is the socially optimal real interest rate. Furthermore, by using (A.5d-e) condition (A.5f)

(A.5j)Ĉ
.
(τ)

Ĉ(τ)
N̂(τ)αC λFK L̂(τ) ,K̂(τ) (α δ) ≡ r̂(τ) α,

can be re-written as:

whereŴ(τ) is the socially optimal real wage rate. Equation (A.5k) shows that the marginal rate of

(A.5k)
(1 εC) Ĉ(τ)

εC 1 L̂(τ)
N̂(τ)αC λ FL L̂(τ) ,K̂(τ) ≡ Ŵ(τ),

substitution between consumption and leisure should be equated to this optimal wage. Finally,

solving (A.5b) yields:

The socially optimal plan is characterized by equation (A.5c) (noting thatλK(τ)=λY(τ)>0 by

(A.5l)N̂(τ)










αC λ
αC f

1
λ
F L̂(τ),K̂(τ)

1
λ .

conditions (A.5d-e)) and equations (A.5h-l). Equation (A.5c) says thatĜ(τ)=0.

For a given level of government consumption,G(τ)=G, equations (A.5h-l) implicitly

determine socially optimal paths for five macroeconomic variables,Ŷ(τ), Ĉ(τ), L̂(τ), K̂(τ) and N̂(τ)

for τ∈[t,∞), given thatK(t)=K0 is pre-determined. The efficiency properties of the free-entry market

equilibrium can be studied by comparing the optimality conditions characterizing the socially

optimal plan to the relevant conditions that emerge in the free-entry market equilibrium. The

relevant expressions for the free-entry equilibrium are:

(A.5m)K̇(τ) Y(τ) C(τ) G(τ) δK(τ),

(A.5n)Ċ(τ)
C(τ)

r(τ) α,

(A.5o)Y(τ) fN(τ)αC N(τ)αC λ F L(τ),K(τ) ,

(A.5p)
(1 εC)C(τ)

εC 1 L(τ)
1 tL(τ) W(τ),
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Equation (A.5m) is the capital accumulation equation which is obtained by combining (T1.1) and

(A.5q)










λεL











Y(τ) fN(τ)αC

L(τ)
N(τ)αC λ FL L(τ) ,K(τ) µW(τ)

1 sP

,

(A.5r)










λ (1 εL)










Y(τ) fN(τ)αC

K(τ)
N(τ)αC λ FK L(τ) ,K(τ) µ r(τ) δ

1 sP

,

(A.5s)µY(τ) λ Y(τ) fN(τ)αC 0.

(T1.6) in Table 1 and imposing the simplifications of the benchmark model. Similarly, equation

(A.5n) is the simplified version of the Euler equation (T1.2). Equation (A.5o) is the production

function (T.9). Equation (A.5p) is obtained by combining (T1.7) and (T1.8). Equations (A.5q-r) are

obtained by rewriting (A.4g-h) in terms of aggregate variables and using the free entry condition

(A.4l). Finally, equation (A.5s) is obtained by writing (A.4l) in terms of aggregate variables. By

solving (A.5o) and (A.5s) for the equilibrium number of firms we obtain:

Comparing the two sets of expressions for the social optimum and the market solution

(A.5t)N(τ)








µ λ
µf

1
λ F L(τ) ,K(τ)

1
λ .

reveals that, providedtL(τ)=0 for all τ, the social optimum can be decentralized by setting the

product subsidy equal tosP=µ-1. In that case, as µ/(1+sP)=1, (A.5j) matches with (A.5n) and (A.5r)

becauser̂(τ)=r(τ), (A.5k) matches with (A.5p-q) asŴ(τ)=W(τ), (A.5i) matches with (A.5m), (A.5h)

matches with (A.5o), and (A.5l) matches with (A.5t). The market characterized by Chamberlinian

monopolistic competition yields the correct number of firms due to the benchmark assumption that

αC=µ. If this is not the case, either lump-sum payments to firms are needed to decentralise the

first-best optimum and get the correct number of firms, or a second-best constrained social

optimum' concept must be used. See Broer and Heijdra (1996) for further details in the case of

exogenous labour supply.

The assertions in Proposition 1(iii) are proved by deriving the steady-state effects of a

change in the product subsidy on aggregate output, employment, the capital stock, the wage rate,

and the number of firms. By doing so we can deduce comparisons for the magnitude attained by

the variables in the social optimum (for whichsP=µ-1) and the market solution (for whichsP=0).

This is done in section A.4.5.
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A.4. Derivations of Results

In Table A.1 the log-linearized version of the complete model is given. The following notational

conventions are adopted for all flow variables and the capital stock.

where dẋ(t)=ẋ(t) since we loglinearize around an initial steady-state. Hence, a variable with a tilde

(A.6a)x̃
.
(t) ≡ dẋ(t)

x(0)
ẋ(t)
x(0)

, x̃(t) ≡ dx(t)
x(0)

,

( ~') denotes the proportional rate of change in that variable (relative to the initial steady-state),

and a variable with a tilde and a dot is the time rate of change in terms of the initial level. For the

labour tax rate (tL) and the product subsidy (sP) the following conventions are used:

Only permanent/unanticipated shocks in the product subsidy are considered in this appendix sos̃P

(A.6b)t̃L(t) ≡
dtL(t)

1 tL(0)
, s̃P ≡

dsP

1 sP(0)
.

has no time index. Table A.2 reports the log-linearized version of the benchmark model. All results

of section 3 in the text are computed with this model.

A.4.1. Local Stability and Proof of Proposition 2

The dynamical system for capital and full consumption can be derived as follows. First, equations

(A2.4)-(A2.7) can be solved forL̃(t), W̃(t), r̃(t), Ĩ(t) and Ỹ(t) in terms of the state variablesK̃(t) and

C̃(t), government consumptionG̃(t), the labour tax ratet̃L(t), and the product subsidys̃P:

whereφ is a labour supply parameter that is defined as:

(A.6c)µεL L̃(t) Ỹ(t) µ(1 εL) K̃(t),

(A.6d)W̃(t)










µεL 1

µεL

Ỹ(t)










µ(1 εL)

µεL

K̃(t) s̃P,

(A.6e)Ỹ(t) µφ (1 εL) K̃(t) (φ 1) C̃(t) t̃L(t) s̃P ,

(A.6f)







α
α δ

r̃(t) Ỹ(t) K̃(t) s̃P,

(A.6g)ωI Ĩ(t) Ỹ(t) ωCC̃(t) ωGG̃(t),

-9-



By substituting (A.6g) into (A2.1) and (A.6f) into (A2.2) and using (A.6e), the general form of the

(A.6h)φ≡
1 ωLL

1 ωLL (1 µεL)
, φ≥1.

dynamical system is obtained:

where the Jacobian matrix∆ has typical elementδij :

(A.6i)









K̃
.
(t)

C̃
.
(t)

∆










K̃(t)

C̃(t)
γ(t),

and whereγ(t) is a vector of (potentially time-varying) forcing terms:

(A.6j)∆ ≡










(δ/ωI) µφ (1 εL) ωI (δ/ωI) (1 φ ωC)

(α δ) µφ (1 εL) 1 (α δ) (1 φ)
,

Local stability is investigated by examining the characteristic roots of∆. Saddle point stability is

(A.6k)γ(t) ≡










γK(t)

γC(t)
≡















(δ/ωI) ωGG̃(t) (φ 1) t̃L(t) s̃P

(α δ) (φ 1) t̃L(t) φ s̃P

.

ensured if the characteristic roots alternate in sign. Denoting the unstable (positive) root byr* and

the stable (negative) root by -h*, we know that r*-h*=tr(∆) and r*h*=- ∆ . After some

manipulation, tr(∆) can be written as:

where have used the following relationships between the parameters and shares which are implied

(A.6l)tr(∆)










δ
ωI

(µ 1 sP)φ (1 εL) ωA > 0,

by the initial steady state:

Equation (A.6l) shows that, if the product subsidy is no higher than its first-best optimum value

(A.6m)α δ ≡










δ
ωI

(1 εL)(1 sP), ωA ≡ (1 εL) (1 sP) ωI .

(sP≤µ-1), tr(∆)>0 and at least one positive root is guaranteed (in the textsP=0).

A necessary and sufficient condition for saddle-point stability is that the determinant of∆

be negative:
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If φ=1 or ωG=0, ξ≡1-µ(1-εL)>0 is a necessary and sufficient condition for saddle-point stability. If

(A.6n)∆










δ (α δ)
ωI

ωG(φ 1) ωCφ 1 µ(1 εL) .

ωG>0 andφ>1, thenξ>0 is sufficient but not necessary. To show this, assume thatξ=0 andsP=0.

In that case tr(∆)≡(δ/ωI)[µφεL(1-εL)+ωA]>0 and ∆ ≡-ωG(φ-1)(α+δ)(δ/ωI)<0. The formula for the

stable characteristic root is:

If ωG is small (but positive), the determinant is small and negative, but the trace is strictly positive.

h ≡ 1

2
tr(∆) 1 1 4 ∆ tr(∆)

2
< 0.

As a result, the adjustment speedh* is positive but very low in that case.

The inequality for the unstable characteristic root,r*>ωC(α+δ), can be proved as follows.1

Define f(s)≡ sI-∆ . Obviously, for the stable case, f(s) is a quadratic function with rootss1=-h*<0

and s2=r*>0, and f(0)=∆ <0. All we need to show is that f(s̄)<0 for s̄≡ωC(α+δ). By simple

substitutions we obtain (forsP=0):

where we have used the first expression in (A.6m) to simplify the expression for f(s̄).

f(s) (α δ)2(φ ωC 1)










ωG εLωC

1 εL

<0,

A.4.2. General Solution

The general solution of the model can be obtained by using the Laplace transform method

developed by Judd (1982, 1985, 1987). By taking the Laplace transform of (A.6i), and using

we obtain the following expression:

(A.7a)
{ C̃

.
,s} s { C̃,s} C̃(0) and { K̃

.
,s} s { K̃ ,s} ,

Define A(s)≡sI-∆, so that A(s) ≡(s-r*)(s+h*). By pre-multiplying (A.7b) by adj(A(r*)), we obtain

(A.7b)
sI ∆











{ K̃,s}

{ C̃,s}













{ γK ,s}

C̃(0) { γC,s}
.

the initial condition for the jump in consumption:

1The form of this proof was suggested by D.P. Broer of Erasmus University.
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Since the characteristic roots of∆ are distinct, rank(adj(A(r*)))=1 and there is exactlyone

(A.7c)

adj[A(r )]A( r )










{ K̃,r }

{ C̃,r }













r δ22 δ12

δ21 r δ11













{ γK ,r }

C̃(0) { γC,r }











0

0
.

independent equation determining the jump in full consumption,C̃(0). Hence, either row of (A.7c)

may be used to findC̃(0):

Using either (A.7d) or (A.7e) to eliminateC̃(0) from (A.7b), we obtain the general perfect

(A.7d)(r δ22) { γK ,r } δ12 C̃(0) { γC,r } 0,

(A.7e)δ21 { γK ,r } (r δ11) C̃(0) { γC,r } 0.

foresight solution of the model in terms of Laplace transforms. Consider the first row of (A.7b) in

combination with (A.7d). After some simplification it can be written as follows:

The second row of (A.7b) can be combined with (A.7e), after which we obtain:

(A.7f)

(s h ) { K̃ ,s} { γK ,s}

(r δ22)










{ γK ,s} { γK ,r }

s r
δ12











{ γC,s} { γC,r }

s r
.

The long-run effects of the shocksγK(∞) and γC(∞) are obtained from (A.7f) and (A.7g) by

(A.7g)

(s h ) { C̃,s} C̃(0) { γC,s}

δ21











{ γK ,s} { γK ,r }

s r
(r δ11)











{ γC,s} { γC,r }

s r
.

applying the final-value theorem (Spiegel, 1965, p. 20).

(A.7h)K̃(∞) ≡ lim
s↓0

s { K̃,s}
δ22γK(∞) δ12γC(∞)

r h
,
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(A.7i)C̃(∞) ≡ lim
s↓0

s { C̃,s}
δ21γK(∞) δ11γC(∞)

r h
.

Equations (A.7d-i) can be used to calculate the impact, transition, and long-run results for the

capital stock and full consumption once the time paths forγK(t) and γC(t) are specified. These paths

generally depend on both the type of financing (lump-sum taxes or labour income taxes) and the

type of policy experiment (permanent or temporary; anticipated or unanticipated)

A.4.3. Lump-Sum Taxes

Under lump-sum tax financing we havet̃L(t)=0 ands̃P=sP=0, so that the government budget identity

(A2.3) in Table A.2 can be ignored. In the case of an unanticipated permanent increase in

government spending, the forcing terms are simplified toγK(t)=γK(∞)=(δωG/ωI)G̃ and γC(t)=0, i.e. G̃

is a step function with Laplace transform {G̃,s)=G̃/s. In that case, it is possible to derive the

following expression:

It is also useful to recognise that:

(A.7j){ γK ,s} { γK ,r }

s r











γK(∞)

r

1
s











δωGG̃

ωI r

1
s

.

By using (A.7j-k) in (A.7f) and recognising (A.7h), we obtain the transition path for the capital

(A.7k)1

(s h )s

1

h








1
s

1

s h
.

stock by inverting the Laplace transforms (coinciding with the second expression in (10f) in the

text):

Equation (A.7l) contains anadjustment term, denoted by A(h*,t), about which the following useful

(A.7l)K̃(t) A(h ,t) K̃(∞).

properties can be established.

LEMMA A.1: Let A(α1,t) be an adjustment function of the form:

with α1>0. Then A(α1,t) has the following properties: (i) (positive)A(α1,t)>0 t∈(0,∞), (ii)

A(α1,t) ≡ 1 e α1t,

A(α1,t)=0 for t=0 and limt→∞A(α1,t)=1, (iii) (increasing) dA(α1,t)/dt≥0, (iv) (step function as

limit) limα1→∞A(α1,t)=u(t), whereu(t) is a unit step function.
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PROOF: Properties (i) and (ii) follow by simple substitution. Property (iii) follows from the fact that

dA(α1,0)/dt=α1[1-A(α1,t)] plus properties (i)-(ii). Property (iv) follows by comparing the Laplace

transforms of A(α1,t) and u(t) and showing that they converge asα1→∞. Since {u(t),s}=1/s and

{A( α1,t),s}=1/s-1/(s+α1) this result follows.

By using (A.7j-k) in (A.7g) and noting (A.7i), we find the transition path for full

consumption by inverting the resulting Laplace transforms (coinciding with the first expression in

(10f) in the text):

where the jump in consumption that occurs at impact can be calculated by using either (A.7d) or

(A.7m)C̃(t) C̃(0) 1 A(h ,t) C̃(∞)A(h ,t),

(A.7e) (see equation (10a) in the text). By using equations (A.6c-g) the results forL̃(0), W̃(0), r̃(0),

Ĩ(0) and Ỹ(0) are obtained by usingC̃(0), and the long-run results for these variables are obtained

by usingK̃(∞) andC̃(∞). All results have been reported in section 3.2 in the text.

-14-



A.4.4. Labour Income Taxes

If the permanent unanticipated increase in public consumption is financed by means of the labour

income tax we haveT̃(t)=0, so that the government budget identity (A2.3) in Table A.2 reduces to:

where we have also used the fact that the wage bill is proportional to aggregate output (see the

(A.8a)ωGG̃ (1 tL)εL











t̃L(t)










tL

1 tL

Ỹ(t) ,

first expression in (A2.4)) and of course thatsP=s̃P=0. By solving (A.8a) fort̃L(t) and substituting

the result into equation (A.6e), the following quasi-reduced form' expression forỸ(t) is obtained:

where∆L is a Laffer term which is defined as:

(A.8b)Ỹ(t) µφ∆L (1 εL) K̃(t) (φ 1)∆L











C̃(t)
ωGG̃

(1 tL)εL

,

We assume that the economy operates on the upward sloping segment of the Laffer curve, which

(A.8c)∆L ≡










1 (φ 1)










tL

1 tL

1

.

implies that∆L>1. By using (A.6f-g) and (A.8b) in (A2.1)-(A2.2), the system can once again be

written as in (A.6i), with∆ defined as:

and the (time-invariant) shock termγ(t)=γ as:

(A.8d)∆ ≡










(δ/ωI) µφ∆L (1 εL) ωI (δ/ωI) (φ 1)∆L ωC

(α δ) µφ∆L (1 εL) 1 (α δ) (φ 1)∆L

,

The determinant of∆ must be negative in order for saddle point stability to hold:

(A.8e)γ ≡










γK

γC

≡































δ
ωI











1
(φ 1)∆L

(1 tL)εL

(α δ) (φ 1)∆L

(1 tL)εL

ωGG̃.

Saddle-point stability thus ensures that the denominator of the long-run multiplier expression (11k)

(A.8f)∆










(α δ)2

1 εL

∆L











(1 ωI) (φ 1) ωC











1 µφ (1 εL) (φ 1)










tL

1 tL

< 0.

is positive.

The long-run results for consumption and the capital stock are obtained by using (A.8d-e)
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and (A.6i) in steady-state form. OnceK̃(∞) and C̃(∞) are known, equations (A.6c-d) can be used to

recover the expressions forL̃(∞) and W̃(∞). Obviously, we still have thatĨ(∞)=K̃(∞)=Ỹ(∞) and

r̃(∞)=0. The results are reported in Table A.3.

The impact result for consumption is obtained by using the shock vector (A.8e) in equation

(A.7d). After some manipulation we obtain:

where we have used the fact thatr*>ωC(α+β) also in the presence of labour taxation (see below) in

(A.8g)C̃(0)

ωGG̃

εL (1 tL) r (α δ)(φ 1)∆L (φ 1)∆L r (α δ)ωC

εL (1 tL) ωC (φ 1)∆L r
< 0,

order to sign the expression. By using (A.8g) we can furthermore derive that:

By using (A.8h) in (A.8b) and noting thatK̃(0)=0, the expression forỸ(0) is obtained. The results

(A.8h)C̃(0)
ωGG̃

(1 tL)εL

ωC εL (1 tL) r (α δ)(φ 1) ωGG̃

εL (1 tL) ωC (φ 1)∆L r
.

for Ĩ(0) and r̃(0) follow from (A.6f-g) and the results forL̃(0) andW̃(0) from (A.6c-d). All results

are reported in Table A.3. Since the shock is introduced instantaneously the transition paths for

K̃(t) and C̃(t) are still of theform given in (A.7l) and (A.7m), respectively.

It remains to prove thatr*>ωC(α+β) even with labour taxation. We again define f(s)≡ sI-

∆ , where ∆ is now given in (A.8d). We need to show is that f(s̄)<0 for s̄≡ωC(α+δ). By simple

substitutions we obtain:

where we have used the first result in (A.6m) to simplify the expression for f(s̄).

f(s) (α δ)2 ωC (φ 1)∆L











ωG εLωC

1 εL

<0,

A.4.5. Long-Run Effects of the Product Subsidy

In order to prove the assertions in Proposition 1(iii) we compute the long-run effects of a

permanent increase in the product subsidy (s̃P>0). By using this shock in (A.6k) (withG̃(t)=t̃L(t)

=0) and (A.7h-i) we obtain the long-run effects of the capital stock and consumption:

(A.8i)K̃(∞) Ĩ(∞)
(α δ) (δ/ωI) φ 1 φωC s̃P

r h
> 0,

(A.8j)
C̃(∞)

(α δ) (δ/ωI) φ 1 φ (1 εL) µ 1 sP ωA s̃P

r h
> 0,
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where the sign of the consumption effect follows from the fact that we assume that the initial

product subsidy is no higher than its first-best value (0≤sP<µ-1). By using (A.8i-j) in (A.6g) we

obtain the long-run effect on aggregate output and the number of firms:

where we have used (A1.11) plus the fact that µ˜(t)=0 to conclude thatỸ(∞)=αCÑ(∞).

(A.8k)Ỹ(∞) αCÑ(∞)
(α δ) (δ/ωI) (1 ωG) (φ 1) ωCµφ (1 εL) s̃P

r h
> 0,

By using (A.8i) and (A.8k) in (A.6c) the long-run effect on employment is obtained:

If ωG=0, µ(1-εL)<1 is necessary for saddle-point stability andL̃(∞)>0. With a positiveωG, however,

(A.8l)L̃(∞)
(α δ) (δ/ωI) (φ 1) 1 ωG µ(1 εL) s̃P

µεL r h
.

the employment effect is ambiguous because wealth and substitution effects in labour supply work

in opposite directions. In terms of Figure 2 in the text,s̃P>0 shifts the labour supply curve to the

left because consumption (and hence wealth) rises. This is the wealth effect.s̃P>0 also shifts labour

demand up, both because of the direct effect and because the capital stock increases. Since labour

supply is steeper than labour demand, the net effect on employment is ambiguous. IfωG is small,

however, the wealth effect is dominated by the substitution effect and employment rises.

By using (A.8i) and (A.8k) in (A.6d), the long-run effect on the wage is obtained:

In view of the discussion above it is clear that both the wealth and substitution effects lead to a

(A.8m)W̃(∞)
(α δ) (δ/ωI) (φ 1)(µ 1 ωG) µφεL ωC s̃P

µεL r h
> 0.

rise in the long-run wage. There is obviously no long-run effect on the interest rate:r̃(∞)=0. This

completes the proof of Proposition 1(iii).
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A.5. Proofs of Extensions

All extensions are calculated with the aid of Table A.1. In all cases we retain all benchmark

assumptions, except for the one whose influence is studied. Only lump-sum taxes so that the

government budget restriction can be ignored ast̃L(t)=0 for all t.

A.5.1. Ethier Effects

If αI≠αG=αC=µ, the relative price of new investment goods changes as a result of fiscal policy.

This changes the optimal capital-labour ratio in the long run. In the long run, the key equations

are:

where we have used the fact thatP̃I(t)-P̃(t)=(1-αI/µ)Ỹ(t). By solving (A.9a-d) for the long-run

(A.9a)Ĩ(∞) K̃(∞),

(A.9b)
K̃(∞)











αI

µ
Ỹ(∞),

(A.9c)
Ỹ(∞) ωCC̃(∞) ωI











Ĩ(∞)










1
αI

µ
Ỹ(∞) ωGG̃,

(A.9d)Ỹ(∞) µφ (1 εL) K̃(∞) (φ 1)C̃(∞),

output effect, we obtain the expression in (12a).

If αG≠αI=αC=µ, the relative price of the public good changes as a result of fiscal policy. In

the long run, the key equations are (A.9a), (A.9d) and

where we have used the fact thatP̃G(t)-P̃(t)=(1-αG/µ)Ỹ(t). By solving (A.9a), (A.9d), and (A.9e-f)

(A.9e)K̃(∞) Ỹ(∞),

(A.9f)
Ỹ(∞) ωCC̃(∞) ωI Ĩ(∞) ωG











G̃










1
αG

µ
Ỹ(∞) ,

for the long-run output effect, we obtain the expression in (12b).

If αG=αI=αC≠µ, the relative pricesPG(t)/P(t) and PI(t)/P(t) are both constant but the

aggregate scale economies are now different from µ. The key equations are (A.9a), (A.9e) and:

(A.9g)Ỹ(∞) ωCC̃(∞) ωI Ĩ(∞) ωGG̃,
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By solving (A.9a), (A.9e) and (A.9g-h) for the long-run output effect, equation (12c) in the text is

(A.9h)Ỹ(∞)
αC(1 εL) (1 ωLL) K̃(∞) αCεL ωLL C̃(∞)

1 ωLL (1 αCεL)
,

obtained.

A.5.2. Intratemporal Substitution Effects

If we allow for a general value for the substitution elasticity between composite consumption and

labour supply (σCM), the key equations are (A.9a), (A.9e), (A.9g) and:

where θLW≡[ωCσCM+ωLωLL]/[ωC+ωLωLL]. By using (A.9e) and (A.10a-b) we can expressC̃(∞) in

(A.10a)Ỹ(∞)
µ(1 εL) (1 θLWωLL) K̃(∞) µεL ωLL X̃(∞)

1 θLWωLL (1 µεL)
,

(A.10b)C̃(∞) (σCM θLW)










µ(1 εL) K̃(∞) ωLL(1 µεL) X̃(∞)

1 θLWωLL (1 µεL)
X̃(∞),

terms ofỸ(∞) only:

By using (A.9a), (A.9e), and (A.10c) in (A.9g) and simplifying, the expression in (13a) is obtained.

(A.10c)C̃(∞)










µεLσCMωLL 1 µ(1 εL) (1 σCMωLL)

µεLωLL

Ỹ(∞) .

If we allow for a general value for the substitution elasticity between capital and labour in

the gross production function (σKL), the key equations are (A.9a), (A.9g), and:

By using (A.10d-e), we can expressC̃(∞) in terms ofỸ(∞):

(A.10d)Ỹ(∞)
µ(1 ωL) (σKL ωLL) K̃(∞) µωL ωLL σKLC̃(∞)

σKL ωLL 1 ωL (µσKL 1 σKL)
,

(A.10e)
K̃(∞)











µσKL 1 σKL

µ
Ỹ(∞).

By using (A.9a), (A.9g), and (A.10e-f), the expression in (13b) is obtained.
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A.5.3. Mark-up Effects under Free Entry

(A.10f)C̃(∞)










µωL (µ 1) 1 ωLL (σKL 1)(1 ωL)

µωL ωLL

Ỹ(∞) .

In the text below equation (15a) it is asserted that the markup has no first-order effect if µ equals

αC=αI=αG initially. It asserted in the text that the markup drops out of both the aggregate

production function and the labour demand function (even forσKL≠1). This has been shown in the

text for the aggregate productivity index in (15a). For labour demand it is shown as follows. By

solving (A1.11) for Ñ(t) and substituting the result into the general labour demand expression

(A1.4), we obtain in successive steps:

where we have used the fact that µ=λη (due to free entry) and µ=αC (by assumption) in the final

λη L̃(t) 1 (λ 1)σKL









η







Ỹ(t)








η
η 1

µ̃(t)








η
η 1

µ̃(t) λησKL µ̃(t)

η (1 σKL)(λ αC)

αC









Ỹ(t)








η
η 1

µ̃(t) λησKLW̃(t) ⇔

λη L̃(t) λη










σKL

1 σKL

αC

Ỹ(t) λησKLW̃(t)










η (1 σKL)(λη αC)

αC(η 1)
µ̃(t) ⇔

(A.11)L̃(t)










σKL

1 σKL

αC

Ỹ(t) σKLW̃(t),

step. Hence, the markup drops out of the labour demand expression even ifσKL≠1.

The only place where µ˜(t) appears in the model is in equation (A1.10). Hence, the change

in the markup is determined residually under free entry/exit if µ=αC=αI=αG initially.

A.5.4. Mark-up Effects under Restricted Entry

Under restricted entry and with a constant mark-up, the key equations are given by (A.9a), (A.9g),

and:

(A.12a)Ỹ(∞) η K̃(∞),

(A.12b)Ỹ(∞) η W̃(∞) L̃(∞) ,
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Note that the excess profit rate,π, can be written as:

(A.12c)L̃(∞) ωLL W̃(∞) C̃(∞) ,

(A.12d)Ỹ(∞) µεL L̃(∞) λη µεL K̃(∞),

so that, if the economy is initially in a zero-profit equilibrium, µ=λη and (A.12d) is identical to

(A.12e)π ≡
Pi Yi

TCi

1 µ
λη

1,

(A2.7). Equations (A.12a-b) are, however, still different from the expressions (A2.4) which hold

under free entry/exit.

By combining (A.12a-d) we obtain the following expression forC̃(∞):

Using (A.9a), (A.12f), and (A.12a) in (A.9g), we obtain the expression (15c) in the text.

(A.12f)C̃(∞)










µεL/η (λ 1)(1 ωLL)

µεLωLL

Ỹ(∞).

With a variable markup, (A.12a-b) are replaced by, respectively:

and (A.12f) becomes:

(A.12g)Ỹ(∞) η K̃(∞) µ̃(∞) ,

(A.12h)Ỹ(∞) η L̃(∞) µ̃(∞) W̃(∞) ,

By using (A.9a), (A.12g) and (A.12i) in (A.9g), we obtain the multiplier expression (15h) in the

(A.12i)C̃(∞)










µεL/η (λ 1)(1 ωLL)

µεLωLL

Ỹ(∞) 1
ωLL











1
λη (1 ωLL)

µεL

µ̃(∞).

text.
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A.5.5. No Intertemporal Substitution in Labour Supply

In order to study the crucial role played by the intertemporal substitution effect in labour supply,

we compute the multiplier in the absence of this effect. Instead of using equation (1f) in the text,

we use the following sub-utility function:

with θ>0 andγL>0. The units in (A13a) must of course be chosen such thatU(τ)>0. This can be

(A.13a)
U C(τ) ,L(τ) C(τ)











γL

1 θ
L(τ)1 θ,

ensured by choosingγL appropriately. The Hamiltonian associated with the optimisation problem

faced by the representative consumer can be written as:

where λA(τ) is the co-state variable of the flow budget identity. This leads to the following first-

(A.13b)
H(τ) ≡ log











C(τ)










γL

1 θ
L(τ)1 θ

λA(τ) r(τ)A(τ) W(τ)L(τ) T(τ) C(τ) ,

order conditions:

By eliminating λA(τ) from (A.13c-e), we obtain the following expressions characterizing household

(A.13c)1
U(τ)

λA(τ),

(A.13d)γLL(τ)θ

U(τ)
λA(τ)W(τ),

(A.13e)dλA(τ)

dτ
α r(τ) λA(τ).

behaviour:

The first expression in (A.13f) shows that labour supply only depends on the real wage.

(A.13f)

W(τ) γLL(τ)θ, U̇(τ) r(τ) α U(τ),

U(τ) C(τ)










γ 1/θ
L

1 θ
W(τ)

1 θ
θ .

The expressions appearing in (A.13f) can be log-linearized as follows:
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with:

(A.13g)
W̃(t) θ L̃(t), Ũ

.
(t) α r̃(t), ωCC̃(t) ωUŨ(t) (εL/θ)W̃(t),

The full model consists of the expressions in (A.13g), (A2.1), (A2.4), (A2.5), and (A2.7). Using

(A.13h)
Ũ
.
(t) ≡ dU̇(t)/U U̇(t)/U, Ũ(t) ≡ dU(t)/U, ωU ≡ U/Y.

the standard solution procedures, the following expressions can be obtained:

where we assume that the denominator is positive. By using (A.13i) in the second expression of

(A.13i)Ỹ(t) (1 θ) L̃(t)








1 θ
θ

W̃(t)










αC(1 εL) (1 θ)

1 θ αCεL

K̃(t),

(A2.4) and in (A2.5), respectively, the following expressions are obtained:

Finally, by substituting the expressions in (A.13j) into (A2.1) and the second expression in

(A.13j)

α r̃(t)










(α δ) αCεL (1 θ) 1 αC(1 εL)

1 θ αCεL

K̃(t),

ωI Ĩ(t)










1 θ εL

1 θ
Ỹ(t) ωUŨ(t) ωGG̃.

(A.13g), respectively, the dynamical system forK̃(t) and Ũ(t) is obtained:

where the Jacobian matrix∆ is:

(A.13k)









K̃
.
(t)

Ũ
.
(t)

∆










K̃(t)

Ũ(t)











(δωG/ωI)G̃

0
,

Local stability is again investigated by examining the characteristic roots of∆. Saddle point

(A.13l)∆ ≡





















(δ/ωI)




















1 θ εL

1 θ αCεL

αC(1 εL) ωI (δωU /ωI)

(α δ)










αCεL (1 θ) 1 αC(1 εL)

1 θ αCεL

0

.

stability is ensured if the characteristic roots alternate in sign. A necessary and sufficient condition

for saddle-point stability is that the determinant of∆ be negative:
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There must be diminishing returns to capital for saddle-point stability to hold.

(A.13m)∆
δωX(α δ) αCεL (1 θ) 1 αC(1 εL)

ωI 1 θ αCεL

< 0.

By using (A.13k) in the steady state, it is clear that an increase in government consumption

does not affect the long-run capital stock at all. By (A.13i-j) it follows that the output employment,

the wage, and the interest rate are unaffected also. The long-run effect on sub-utility is thus

unambiguously negative:

Hence, regardless of the intratemporal substitution elasticity of labour supply (θ), there is one-for-

(A.13n)dU(∞)
dG

dC(∞)
dG

1.

one crowding out of private by public consumption. This demonstrates the crucial importance of

the intertemporal substitution effect in labour supply.

A.5.6. Indivisible Labour

In the text it is asserted that Hansen’s (1985) indivisible labour solution is obtained by setting

ωLL→∞. This can be shown as follows. In the Hansen model, the felicity function of the

representative household is linear in leisure, and the household solves:

The first-order conditions for this problem are:

(A.14a)

Max
{ C(τ),L(τ)} ∞

t
⌡
⌠
∞

t

logC(τ) γL 1 L(τ) expα (t τ) dτ

s.t. dA(τ)
dτ

r(τ)A(τ) 1 tL(τ) W(τ) T(τ) C(τ).

whereλA(τ) is the co-state variable of the flow budget restriction. By using (A.14b) in (A.14c) and

(A.14b)C(τ) 1 λA(τ), τ∈ [t,∞),

(A.14c)γL λA(τ)W(τ) 1 tL(τ) , τ∈ [t,∞),

(A.14d)dλA(τ)

dτ
[α r(τ)] λA(τ), τ∈ [t,∞),

(A.14d), the household’s optimal plans reduce to:
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Equation (A.14e) is identical to (T1.2) for the benchmark model (withC(τ)=εCX(τ)). Equation

(A.14e)Ċ(τ)
C(τ)

r(τ) α,

(A.14f)γLC(τ) W(τ) 1 tL(τ) .

(A.14f) can be log-linearized:

Equation (A.14g) coincides with the expression in (T2.6) forωLL→∞. This proves that setting

(A.14g)C̃(t) W̃(t) t̃L(t).

ωLL→∞ yields the indivisible labour model.
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Table A.1: Log-Linearized Version of the Complete Model

(A1.1)
K̃
.
(t) δ Ĩ(t) K̃(t)

(A1.2)
X̃
.
(t) α r̃(t)

(A1.3)

ωG G̃(t) P̃G(t) P̃(t) ωTT̃(t) (1 tL)ωL











t̃L(t)










tL

1 tL

L̃(t) W̃(t)

(1 sP)










s̃P











sP

1 sP

Ỹ(t)

(A1.4)λη L̃(t) 1 (λ 1)σKL Ỹ(t) αC(η 1)Ñ(t) λησKL µ̃(t) η (1 σKL)(λ αC) Ñ(t) λησKLW̃(t)

(A1.5)
K̃(t) L̃(t) σKL









W̃(t) P̃(t) P̃I(t)








α
α δ

r̃(t)








1
α δ

P̃
.
(t) P̃I

.
(t)

(A1.6)Ỹ(t) ωCC̃(t) ωI Ĩ(t) P̃I(t) P̃(t) ωG G̃(t) P̃G(t) P̃(t)

(A1.7)C̃(t) ωM (σCM 1) W̃(t) t̃L(t) X̃(t)

(A1.8)
L̃(t) ωLL σCM ωM (1 σCM) W̃(t) t̃L(t) X̃(t)

(A1.9)Ỹ(t) (αC λη) Ñ(t) µωL L̃(t) (λη µωL) K̃(t)

(A1.10)µ

(µ 1)2
µ̃(t) ωC(σC σG) C̃(t) Ỹ(t) ωI (σI σG) Ĩ(t) P̃I(t) P̃(t) Ỹ(t)

(A1.11)µ̃(t)








η 1
η

αCÑ(t) Ỹ(t)

(A1.12)P̃G(t) P̃(t) (αC αG) Ñ(t), P̃I(t) P̃(t) (αC αI) Ñ(t)

Shares and parameters:
ωT T/Y. Share of lump-sum taxes in real output.
ωL WL/Y. Share of before tax wage income in real output.
ωM Share of gross spending on leisure in full consumption,ωM≡(1-tL)ωLωLL/

[ωC+(1-tL)ωLωLL] and 0<ωM<1.



η (f+Ȳ)/Ȳ Scale parameter due to fixed cost. If entry/exit is free then µ=λη.
ωG GPG/PY. Share of government spending on differentiated goods in output.
ωC C/Y. Share of private consumption in real output
ωI IPI/PY. Share of investment spending on differentiated goods in output,ωC+ωI+ωG=1.
ωLL (1-L)/L Ratio between leisure and labour.
tL Proportional tax rate on labour levied on households.
r*h*≡[(α+δ)2/(1-εL)][ωG(φ-1)+φωC(1-µ(1-εL))]>0.

Note:
Under restricted entry/exit,Ñ(t)=0, and the zero pure-profit condition (A1.11) is irrelevant. Under free
entry/exit, simplifications are obtained by noting that µ=λη.



Table A.2: Log-Linearized Version of the Benchmark Model

(A2.1)
K̃
.
(t) δ Ĩ(t) K̃(t)

(A2.2)
C̃
.
(t) α r̃(t)

(A2.3)

ωGG̃(t) ωTT̃(t) (1 tL)εL











t̃L(t)










tL

1 tL

L̃(t) W̃(t)

(1 sP)










s̃P











sP

1 sP

Ỹ(t)

(A2.4)L̃(t) Ỹ(t) W̃(t) s̃P, K̃(t) Ỹ(t)








α
α δ

r̃(t) s̃P

(A2.5)Ỹ(t) ωCC̃(t) ωI Ĩ(t) ωGG̃

(A2.6)L̃(t) ωLL W̃(t) t̃L(t) C̃(t)

(A2.7)Ỹ(t) µ εL L̃(t) (1 εL) K̃(t)

Definitions:
εL WL/Y. Share of before tax wage income in real output, 0<εL<1.
ωA rK/Y. Share of income from financial assets in real output,ωA=ωC+ωT-(1-tL)εL and

ωA=(1-εL)(1+sP)-ωI, ωA>0.
ωG G/Y. Share of government spending on differentiated goods in output, 0≤ωG<1.
ωC C/Y. Share of private consumption in real output, 0<ωC<1.
ωI I/Y. Share of investment spending on differentiated goods in output,ωC+ωI+ωG=1,

0<ωI<1.
ωLL (1-L)/L Ratio between leisure and labour.
ωT T/Y. Share of lump-sum taxes in real output,ωG+sP=ωT+tLεL.
tL Proportional tax rate on labour levied on households,tL≥0.
µ σC/(σC-1) Gross markup, µ>1.
sP Ad valorem product subsidy,sP≥0.



Table A.3: The Effects of Fiscal Policy in the Benchmark Model under Labour Income Taxation

The shock in government spending is normalized toωGG̃=1

Impact Effect(t=0) Long-Run Effect(t→∞)

K̃(t) 0
(φ 1)(α δ)∆L εL (1 tL) ωC

r h (ωI /δ)εL (1 tL)

C̃(t) εL (1 tL) r (α δ)(φ 1)∆L (φ 1)∆L r (α δ)ωC

εL (1 tL) ωC (φ 1)∆L r

(α δ)∆L (φ 1)ωA εL (1 tL)φ 1 µ(1 εL)

r h (ωI /δ)εL (1 tL)

Ỹ(t)
(φ 1)∆L εL (1 tL) ωC r (α δ) (φ 1)

εL (1 tL) ωC (φ 1)∆L r

(φ 1)(α δ)∆L εL (1 tL) ωC

r h (ωI /δ)εL (1 tL)

Ĩ(t)
(α δ) (φ 1)∆L εL (1 tL) ωC

εL (1 tL)ωI r

(φ 1)(α δ)∆L εL (1 tL) ωC

r h (ωI /δ)εL (1 tL)

L̃(t)
(φ 1)∆L εL (1 tL) ωC r (α δ) (φ 1)

µε2
L (1 tL) ωC (φ 1)∆L r

(φ 1)(α δ)∆L εL (1 tL) ωC 1 µ(1 εL)

r h (ωI /δ)µε2
L (1 tL)

W̃(t)
(µεL 1)(φ 1)∆L εL (1 tL) ωC r (α δ) (φ 1)

µε2
L (1 tL) ωC (φ 1)∆L r

(µ 1)(φ 1)(α δ)∆L εL (1 tL) ωC

r h (ωI /δ)µεL (1 tL)

r̃(t)
(φ 1)(α δ)∆L εL (1 tL) ωC r (α δ) (φ 1)

αεL (1 tL) ωC (φ 1)∆L r
0


