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A.l. The Three-Stage Solution Method

The optimisation problem faced by the representative consumer can be solved in three stages. In
step 1 the path of full consumptiad(t) is solved. In step 2 full consumption is allocated between

its componentsC(t) and 1L(1). Finally, in step 3,C(1) is allocated over the different varieties of

the differentiated product;(T).

Stage 1

Define the ideal cost-of-living index &&,(t):
P,(MU@) = X(), (A.1a)

where U(1)=U[C(1),1-L(1)]. In the first stage the following optimisation problem is solved for
TO[t,0).

<)

Max {IogU(T)exda(tr)]dr

{u@}
(A.1b)
sit. dg?) - HOA®) + [ @WD) - T - Py@UQ).
This leads to the following first-order conditions:
U@™ = \OP,D), 10[t), (A.1lc)
dng) = [a-r@IA,  T0[te), (A.1d)

whereA,(T) is the co-state variable of the flow budget restriction. The integrated (life-time) budget

restriction (with a NPG condition imposed) is:

00

O 0
Aty + H(t) = JPU(T)U(T)ex;%Ir(u)dL%i
0 0

(A.le)
. . .
= [ty e [ dt
0 0
whereH(t) is defined as:
. o .
H(t) = ﬂ[ltL(T)]W(T) - T()|expd I r() dyfRt. (A.1f)
0 0

The path ofA,(1) is described by (A.1d) which can be solved to yield the following:
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(]t O
M) = expEJ[r(u)a]dugiA(t), >t (A.1g)
0 0

Using (A.1g) in (A.le) yields the following:

°0 [ ot O O
A(t) + H() = [1A (t) @xp@[ar(p)}d% expd J r() bt
O HIN| O O

(A.1h)
= oA (O] %
But P,(t)U(t)=X(t)=1/A,(t), so that (A.1h) can be written for peridchs follows.
X(t) = alA®) + H(). (A.1i)

Note that equations (A.1a) and (A.1c-d) can be combined to obtain (T1.2) in Table 1 of the paper.

Stage 2
Full consumptionX(t) is now allocated over consumption of the composite differentiated good
(C(t)) and leisure (1=(t)).

D GCM 1 1 -1 %wm
Max = Bem T ¢ (1-e) ™ 1- L(t)] Seu P
{C(t),lfL(t)} (A.2a)
st Ct) + [1-t,O]WH[1-L®] = X().
This implies the following expression:
Ec
C(t) = F%(1tL(t))w(t)]%M[1|_(t)]. (A.2b)

Substituting (A.2b) into (1c) yields the expressions Egt) and C(t) in terms of full consumption
X(t).

(1-£)[(L-t (O)WCR)| *=
¢ + (L-g[(L-t WD

L(t) = 1 - X(@), (A.2¢)



) - b X(t). (A.2d)

e+ (L-e](L-t )W) =

The expression for the true price index is obtained by substituting (A.2c-d) into the

instantaneous utility function (1f) and noting (A.1a):

1

. 1T A.2e
Pu(D) = [ee + (- [WID(L-t () =™, (A-2€)
Equations (A.2c-d) are reported in Table 1 of the paper in (T1.7)-(T1.8).
Stage 3
The agent now choosé&3(t) such that the following static maximisation program is solved.
N(t) D—I N(t)
Max N(t)% E}I(t) 12 CH™H st Y POCEH = PECH). (A.32)
{CO} O d i1
Straightforward manipulation yields the demand functions for the differentiated commodities by the
agent:
EP ® E% (A.3b)
C(t) = N(p) g 25 C(t), i=1,...N(), '
PO O

whereP(t) is defined as:

il %1_ (A.3¢)

P(t) = N(t)® El(t) Z P(t)“’

Equations (A.3b-c) are reported in the paper in (1g) and (1e), respectively.



A.2. The Optimisation Problem for a Representative Firm

The representative firm aims to maximise (3b) subject to (3c-d) and (3a). The current-value

Lagrangian is defined as follows.

L(1) = P()(L+s)Y,"() - WHOL(T) - P(MQ(Y)
(A.4a)

FADQMA - FOK®] + MO[FL@.K@) - f - Y2,

where the price-elastic demand facing fiinis defined asY®(t)=C,(1)+l,(1)+G(t), and wheres, is
an ad valorem product subsidy to be used below in section A.3 to show how the first-best
optimum can be decentralised in some cases.

The control variables ar®,(1), Li(t), and Q(t), the state variable i¥(1), the co-state

variable isA.(t), and A (1) is the Lagrange multiplier for the demand restriction. The first-order
necessary conditions are:

gg;i((?) - 0: -P(1) + A () = 0, (A.4b)

gfgg WD) A ‘(T)) , (A4c)

% =00 (1+s)Y°() + [PO(L+s) - Mr)@%é— 0, (A.4d)
gff((”) A (D) - ROMD: AfD) - RO +FOAD) = AL (‘;’E((T)) (A4e)
Ki(r)=%: K1) = Q) - §(MK). (A4.)

Equation (A.4b) implies thah,(t)=P,(t). Equation (A.4d) can be used to solve fof1) in terms
of the mark-up, |ft), and the price chosen by the firtvy(1)=P,(1)(1+s:)/li(1). Hence A (1) has the
interpretation of marginal cost. Substituting these expressiona oy and A,(t) into (A.4c) and
(A.4e) yields the marginal productivity conditions:

ov® Bew B wyw H (A4g)

L EO-1HT+s)POH




@ ge&m® H PO %() .()D (A.4h)
KO FO-IHIs)POH POE

In the absence of a product subsidy these equations coincide with (3e-f) in the text.
Profit of firm i is defined as total revenue minus payments to the production factors labour

and capital:

D .
M© = POA$IYM - WHOLD - PORO - P'E igq ), (ad)
g

Under free exit and entry of firms, profits of all active firms go to zefg(t)=0. The gross
production function is homogeneous of deghlee
aF(T) oF(1) _ -
1) + K(t) = AR(L(1),K(T AlY(T) +f A4
@ o " gr O T ARLOK@) = AN 1] (A.4))
By substituting the marginal productivity conditions (A.4g-h) into (A.4i) and using (A.4j), we can

obtain the following expression for profit of an active firm:

P (D) (L+s,)

M) = [.,T@u,(r)vi(n - A[Y,(0) +f]|. (A.4K)
O H O

Since the term in round brackets on the right-hand side is positive, the zero profit condition is:
KOY® =AY @+H] = pE = An), (A.41)

where n;(T)=(f+Y;(1))/Y;(t) measures (local) internal scale economies due to the existence of fixed
costs (Rotemberg and Woodford 1995, pp. 251-3).



A.3. Proof of Proposition 1

The current value Hamiltonian for the first-best optimum is:

(1) = £logC(t) + (1-g.)logl-L(T)]
(A.5a)

+ ALY - C) - G) - 3K(T)] - AL)[Y(T) + N@)™F - N(©)* "F(L(1),K(T))].

Government consumption cannot be negative, J1)=0. Then the first-order conditions are:

gjﬁ%ﬂ):@ SO R@ o FRE™ - (o -NNE* *FL) K@) -0,  (ASb)
%:%so:é A <0, 6®M20, -A @) -0, (A.5¢)
é’.{%%:o:@ A (D) -A(1)-0, (A.5d)

E.gg%:oé ég() - (-0, (A 5e)

200 0f 11‘;(; « AOR@* L), RE) = 0, (A5

o oo PO @ - @aim - Aol RRo, 4%
090 07 §(0-Reor R K] - R0 (A.5h)

PA@  H

(A.5))

EIEH:I

%« 1-2°20.0 R = %) -Ea) - &) -5K().

A g

By using (A.5d-e), condition (A.5g) can be re-expressed in terms of the following time profile for

consumption:



@ (A.5))

AU - N)* "F L), K@) - (a+d)
&)

(1) -q,

wheref (1) is the socially optimal real interest rate. Furthermore, by using (A.5d-e) condition (A.5f)

can be re-written as:

(1-£)C)

S = NS F L), K@) = W), (A.5K)
g.|1-L(1)]

whereW(r) is the socially optimal real wage rate. Equation (A.5k) shows that the marginal rate of
substitution between consumption and leisure should be equated to this optimal wage. Finally,

solving (A.5b) yields:

Dot O

N(T) = %]C_)\%F[E(T),R(T)ﬁ. (A.5l)
O%c’ O

The socially optimal plan is characterized by equation (A.5c) (noting Mdt)=A(1)>0 by
conditions (A.5d-e)) and equations (A.5h-I). Equation (A.5c) says(ﬁ@aﬁo.

For a given level of government consumptioG(t)=G, equations (A.5h-I) implicitly
determine socially optimal paths for five macroeconomic variabtés, C(t), L(t), K(t) and N(t)
for 10[t,), given thatK(t)=K, is pre-determined. The efficiency properties of the free-entry market
equilibrium can be studied by comparing the optimality conditions characterizing the socially
optimal plan to the relevant conditions that emerge in the free-entry market equilibrium. The

relevant expressions for the free-entry equilibrium are:

K@) = Y(¥) - C(1) - G(T) - 8K(1), (A.5m)
@ =r(1) - q, (A.5n)
C(1)
Y(T) + fN(D)% = N(T)* *FLT),K(TD)), (A.50)
@) [1-t,(D)) W), (A.5p)
gc[1-L(1)]



0 O .00
@qé{%@ﬁ N F[L(1) K@) - HlVY(STP), (A.50)
0 0 .00
A1) FOINO"E B Ny L) K] - A3 (ASM)
0 0O KO 00 1+s,
uY(™) - AlY@) +fND? = 0. (A.5s)

Equation (A.5m) is the capital accumulation equation which is obtained by combining (T1.1) and
(T1.6) in Table 1 and imposing the simplifications of the benchmark model. Similarly, equation
(A.5n) is the simplified version of the Euler equation (T1.2). Equation (A.50) is the production
function (T.9). Equation (A.5p) is obtained by combining (T1.7) and (T1.8). Equations (A.5g-r) are
obtained by rewriting (A.4g-h) in terms of aggregate variables and using the free entry condition
(A.41). Finally, equation (A.5s) is obtained by writing (A.4l) in terms of aggregate variables. By

solving (A.50) and (A.5s) for the equilibrium number of firms we obtain:

N(1) = M%F[L(T),Ka)ﬁ (A.51)
ouf o

Comparing the two sets of expressions for the social optimum and the market solution
reveals that, provided, (t)=0 for all T, the social optimum can be decentralized by setting the
product subsidy equal tg=p-1. In that case, as W(&)=1, (A.5j)) matches with (A.5n) and (A.5r)
becausé(1)=r(1), (A.5k) matches with (A.5p-q) a‘tiv(r)=W(r), (A.5i1) matches with (A.5m), (A.5h)
matches with (A.50), and (A.5l) matches with (A.5t). The market characterized by Chamberlinian
monopolistic competition yields the correct number of firms due to the benchmark assumption that
o.=W. If this is not the case, either lump-sum payments to firms are needed to decentralise the
first-best optimum and get the correct number of firms, or a second-best constrained social
optimum' concept must be used. See Broer and Heijdra (1996) for further details in the case of
exogenous labour supply.

The assertions in Proposition 1(iii) are proved by deriving the steady-state effects of a
change in the product subsidy on aggregate output, employment, the capital stock, the wage rate,
and the number of firms. By doing so we can deduce comparisons for the magnitude attained by
the variables in the social optimum (for which=p-1) and the market solution (for which=0).

This is done in section A.4.5.



A.4. Derivations of Results
In Table A.1 the log-linearized version of the complete model is given. The following notational
conventions are adopted for all flow variables and the capital stock.

sy = O _ X0 sty = O (A.6a)

x0) x0) O}

where &(t)=x(t) since we loglinearize around an initial steady-state. Hence, a variable with a tilde
(‘~") denotes the proportional rate of change in that variable (relative to the initial steady-state),
and a variable with a tilde and a dot is the time rate of change in terms of the initial level. For the

labour tax ratet() and the product subsidd) the following conventions are used:

dt, (t) _ ds,
1-t,(0)’ * 1+s,(0)

t(@) = (A.6b)
Only permanent/unanticipated shocks in the product subsidy are considered in this appefdix so
has no time index. Table A.2 reports the log-linearized version of the benchmark model. All results

of section 3 in the text are computed with this model.

A.4.1. Local Stability and Proof of Proposition 2

The dynamical system for capital and full consumption can be derived as follows. First, equations
(A2.4)-(A2.7) can be solved far(t), W(t), F(t), I(t) and Y(t) in terms of the state variablé&(t) and

C(t), government consumptioB(t), the labour tax raté (t), and the product subsick:

ue L) = Y(©) - p(L-¢) K@, (A.6¢)
40 O
W(t) = @.Eg?a) + SJE_,L &) K(t) + &, (A.6d)
0Me O 0 H&L O
0 = pe-g)RW) - (0-1)|CO LM -5 (A.6e)
HY Ho - 90 - Ro + 5, (A.6f)
0 +0[]
ol = Y0 -w.Ct) -w, &), (A.69)

where@ is a labour supply parameter that is defined as:



lvwy,

o=—___ " =1 (A.6h)
1+0%L(1_UEJ

By substituting (A.69) into (A2.1) and (A.6f) into (A2.2) and using (A.6e), the general form of the

dynamical system is obtained:

Fog_, KoB_ (A6i)

N O
OISOl
where the Jacobian matrix has typical elemend;:

A= %Blw,)[u(p(l—eL)—wl] (Ow)(1-0-w)

] (A6i)
ga+6)[u(p(l—eL) -1 ©@+9)(1-9) %

and wherey(t) is a vector of (potentially time-varying) forcing terms:

. 0

V) = OF_ @6/“’9 0660 + (@-DEW - épﬂé
= D_

O 0 @ole-nto -es -

(A.6K)

Local stability is investigated by examining the characteristic rootd.ofaddle point stability is
ensured if the characteristic roots alternate in sign. Denoting the unstable (positive) nooary
the stable (negative) root byh'; we know that r'-h'=tr(A) and r'h'=-|A|. After some
manipulation, trd) can be written as:

(A.6)

tr(d) = (M-1-s)o(1-¢) + w,] >0,

(|
ke

where have used the following relationships between the parameters and shares which are implied

by the initial steady state:

O 0
a+d = %%1%)(&%), w, = (1-g)(1+s) - . (A.6m)
1O
Equation (A.6l) shows that, if the product subsidy is no higher than its first-best optimum value
(ss=p-1), tr(d)>0 and at least one positive root is guaranteed (in thegexd).
A necessary and sufficient condition for saddle-point stability is that the determinakt of

be negative:

-10-



Eﬁgi(xé) @w (©-1)+ @l -p(L-)| (A.6n)

If =1 or ws=0, {=1-u(1€)>0 is a necessary and sufficient condition for saddle-point stability. If
ws>0 and@>1, then&>0 is sufficient but not necessary. To show this, assume &@tands.=0.
In that case tf)=(d/w)[uge (1-€)+w,]>0 and |A|=-wg(@-1)(a+0)(0/w)<0. The formula for the

stable characteristic root is:

-h* = ;tr(A)[l - /1 - 4|A|(tr(A))’2} <0

If wg is small (but positive), the determinant is small and negative, but the trace is strictly positive.
As a result, the adjustment spelgdis positive but very low in that case.

The inequality for the unstable characteristic radtw.(a+d), can be proved as follows.
Define f()=|sl-A|. Obviously, for the stable casesf(is a quadratic function with roots,=-h"<0
and s=r'>0, and f(0)3A|<0. All we need to show is that §<0 for s=w.(a+d). By simple

substitutions we obtain (fos.=0):

2 %"“)GJrstcD
{8 = (@ 3P (@ @ -DF———rxO0,
0-"& 0

where we have used the first expression in (A.6m) to simplify the expressionsjar f(
A.4.2. General Solution

The general solution of the model can be obtained by using the Laplace transform method
developed by Judd (1982, 1985, 1987). By taking the Laplace transform of (A.6i), and using

. . - . - (A.7a)
9C,s} =s{Cs} - C(0) and «{K,s} =sK,s},
we obtain the following expression:
0 ~{Vi. st :
ol -a) %{K sg_H e a (A.7b)
@{Cs}g €0)-H{ve. 9

Define A()=sl-A, so that| A§)|=(sr’)(s+h’). By pre-multiplying (A.7b) by adj(A()), we obtain

the initial condition for the jump in consumption:

The form of this proof was suggested by D.P. Broer of Erasmus University.

-11-



(A.7¢)

Since the characteristic roots df are distinct, rank(adj(&({)))=1 and there is exactlypone
independent equation determining the jump in full consumpt{®). Hence, either row of (A.7c)

may be used to find(0):

(-8, Ly r 7} + 8,/C0)-Ly..r ] =0, (A.7d)

8,8y, T} + (r'-8,)|[C0)-L{y..r}] = 0. (A7e)

Using either (A.7d) or (A.7e) to eliminat€(0) from (A.7b), we obtain the general perfect
foresight solution of the model in terms of Laplace transforms. Consider the first row of (A.7b) in

combination with (A.7d). After some simplification it can be written as follows:

(sth)¥K,s = -9y,

(A.71)
L BHYVOS vertH . BHYeS -Hyver ) H
- (r _622)[; B - 612D " [
0 s-r 0 0 S-r 0
The second row of (A.7b) can be combined with (A.7e), after which we obtain:
(sth)(C,s = C(0)-L{y,. S
. . (A.79)
300V S -Lver Y . . BV S -y r ) g
7621[1 " - (r 7611)D - ]
0 S-r 0 0 S-r 0

The long-run effects of the shockg(e) andy.(«) are obtained from (A.7f) and (A.7g) by
applying the final-value theorem (Spiegel, 1965, p. 20).

K(w) = lim s¥{K,s} = “0po¥i() + 612Vc(°°)’

-12-



621y|<(°°) - 511Vc(°°)
rh* '

C(w) = i 9 C,9 = .
(c) Sler(]J s¢{C,s} (A.7i)

Equations (A.7d-i) can be used to calculate the impact, transition, and long-run results for the
capital stock and full consumption once the time pathsyfét) andy.(t) are specified. These paths
generally depend on both the type of financing (lump-sum taxes or labour income taxes) and the

type of policy experiment (permanent or temporary; anticipated or unanticipated)

A.4.3. Lump-Sum Taxes

Under lump-sum tax financing we ha¥gt)=0 and%,=s.=0, so that the government budget identity
(A2.3) in Table A.2 can be ignored. In the case of an unanticipated permanent increase in
government spending, the forcing terms are simplifieq®)=yi()=(5w/w)G andy(t)=0, i.e. G

is a step function with Laplace transfored Gf)=G/s. In that case, it is possible to derive the

following expression:

By S - Hyort | ) Jaancte s (A7)

s-r Er* Eg Dler*EE

*

It is also useful to recognise that:

1 =
(s+h")s

(A.7K)

S s+h*

101 1
h

.

By using (A.7j-k) in (A.7f) and recognising (A.7h), we obtain the transition path for the capital
stock by inverting the Laplace transforms (coinciding with the second expression in (10f) in the
text):

K() = A(h*,)K(c). (A.71)
Equation (A.71) contains aadjustment termdenoted by Alf ,t), about which the following useful
properties can be established.
LEMMA A.1l: Let A(a,,t) be an adjustment function of the form:

A(a,,t) = 1-e™,

with a,>0. Then A(a,t) has the following properties: (i) (positivep(a,,t)>0 t[J(0,0), (ii)
A(a,,t)=0 for t=0 and Iimt_)ooA(al,t):l, (iii) (increasing) dA(a,,t)/dt=0, (iv) (step function as

limit) Iima LAaL=u(t), whereu(t) is a unit step function
l—)

-13-



PrROOF Properties (i) and (ii) follow by simple substitution. Property (iii) follows from the fact that
dA(a,,0)/d=a,[1-A(a,t)] plus properties (i)-(ii). Property (iv) follows by comparing the Laplace
transforms of A¢,,t) and uf) and showing that they converge as- «. Since¥ {uf),s}=1/s and
{A(a,,t),s}=1/s-1/(s+a,) this result follows.]

By using (A.7j-k) in (A.7g) and noting (A.7i), we find the transition path for full
consumption by inverting the resulting Laplace transforms (coinciding with the first expression in
(20f) in the text):

C@) = C0)([1-A(h"1)) + C(w)A(h",1), (A.7m)

where the jump in consumption that occurs at impact can be calculated by using either (A.7d) or
(A.7e) (see equation (10a) in the text). By using equations (A.6c-g) the resuligGpnA(0), F(0),
1(0) and Y(0) are obtained by using(0), and the long-run results for these variables are obtained

by usingK(e) and (). All results have been reported in section 3.2 in the text.

-14-



A.4.4. Labour Income Taxes
If the permanent unanticipated increase in public consumption is financed by means of the labour

income tax we havé(t)=0, so that the government budget identity (A2.3) in Table A.2 reduces to:

< % gt Er{ ] (A.8a)

WG = (1-t)e ) + g— YO :

0 g-tg g

where we have also used the fact that the wage bill is proportional to aggregate output (see the
first expression in (A2.4)) and of course that%.=0. By solving (A.8a) forf (t) and substituting

the result into equation (A.6e), the following quasi-reduced form' expressiov(tiis obtained:

0 = [
y > w,G
Y1) = pon 1-)K@M) - (-1)A €M + T (A.8b)
u (1-t)e D€ L0
whered, is a Laffer term which is defined as:
@ E ' H%l (A.8¢c)
AL = - ((P—l) . m- .
0 ﬁ -4 1N

We assume that the economy operates on the upward sloping segment of the Laffer curve, which
implies thatA >1. By using (A.6f-g) and (A.8b) in (A2.1)-(A2.2), the system can once again be

written as in (A.6i), withA defined as:

_ %6/00,) HQA (1-£) -] -(/w)[(@-1)A +0x

0
= 0 (A.8d)
o Suon (1-e)-1]  -(@+8)(e-1A f
and the (time-invariant) shock terpt)=y as:
a% (oA
_ %KE_ g A-t)e & (A.8e)
y = aclj= D G -
0 g @A -
E (1-t)e E
The determinant ofA must be negative in order for saddle point stability to hold:
E(G +6) gl A.8f
N E& %1 W) (@- 1)+oo@ Ho(L-€) (- 1)D L < 0. (A.80)
D i L M

Saddle-point stability thus ensures that the denominator of the long-run multiplier expression (11k)
is positive.

The long-run results for consumption and the capital stock are obtained by using (A.8d-e)

-15-



and (A.6i) in steady-state form. Oné&ew) and C(e0) are known, equations (A.6¢c-d) can be used to
recover the expressions far(c) and W(w). Obviously, we still have that(c)=K(c)=Y(c) and
f(c0)=0. The results are reported in Table A.3.

The impact result for consumption is obtained by using the shock vector (A.8e) in equation

(A.7d). After some manipulation we obtain:

¢(0) _ {SL(]_*IL) re+(a+9)(p-1)A, +((p71)AL[r —(a +6)ooc]

<0, (A.80)
w,G sL(lftL)[wC+(cp71)AL]r :

where we have used the fact thatw.(a+B) also in the presence of labour taxation (see below) in
order to sign the expression. By using (A.8g) we can furthermore derive that:
w6 (00—, (L-t)]lr "+ (0 +8)(@-1)|w, G

C(0) + =
(1-t)e g (1-t) [wc+((p—1)AL]r :

(A.8h)

By using (A.8h) in (A.8b) and noting theﬁ(O)zo, the expression fo‘?(O) is obtained. The results
for 1(0) andf(0) follow from (A.6f-g) and the results for(0) andW(0) from (A.6¢-d). All results
are reported in Table A.3. Since the shock is introduced instantaneously the transition paths for
K(t) and C(t) are still of theform given in (A.71) and (A.7m), respectively.
It remains to prove that>w.(0+B) even with labour taxation. We again define)|sl-
A|, whereA is now given in (A.8d). We need to show is thaB)0 for ssw.(a+d). By simple

substitutions we obtain:

e oy O
(9 = (@ +8w+(9-1)A %*’5701 ~ ko,
g L Qg

where we have used the first result in (A.6m) to simplify the expression S T(

A.4.5. Long-Run Effects of the Product Subsidy
In order to prove the assertions in Proposition 1(iii) we compute the long-run effects of a
permanent increase in the product subsigy-@). By using this shock in (A.6k) (Witrf;(t)sz(t)

=0) and (A.7h-i) we obtain the long-run effects of the capital stock and consumption:

R(eo) = T(e) = (a+6)(6/w')[:_1+(pw°]§'° >0, (A.8i)
rh
&) - (a +6)(6/wl)[(p_1+(pr[(*t:£L)[u_l_Sp]+wAH§P >0, (A.8))
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where the sign of the consumption effect follows from the fact that we assume that the initial
product subsidy is no higher than its first-best valugs{@u-1). By using (A.8i-)) in (A.6g) we

obtain the long-run effect on aggregate output and the number of firms:

(a+3) (3/w)[(1-we) (@-1) +w HP(l-€)|5,
rh*

Y() = a N(w) = > 0, (A.8K)

where we have used (Al.11) plus the fact th@j30 to conclude that?(m):ucﬂ(w).
By using (A.8i) and (A.8K) in (A.6c) the long-run effect on employment is obtained:

_ (a+9)(d/w) ((pfl)[lfwG fu(lfeL)]ép
werh- '

L(c0) (A.8l)

If we=0, u(1€,)<1 is necessary for saddle-point stability ar@)>0. With a positivew,, however,
the employment effect is ambiguous because wealth and substitution effects in labour supply work
in opposite directions. In terms of Figure 2 in the te%0 shifts the labour supply curve to the
left because consumption (and hence wealth) rises. This is the wealth &ff€ralso shifts labour
demand up, both because of the direct effect and because the capital stock increases. Since labour
supply is steeper than labour demand, the net effect on employment is ambiguagsisismall,
however, the wealth effect is dominated by the substitution effect and employment rises.

By using (A.8i) and (A.8k) in (A.6d), the long-run effect on the wage is obtained:

(@ +3) (8/w)[(@-1) (U-1+0d;) +HPE W[5,

W(e) =
) He T h”

> 0. (A.8m)

In view of the discussion above it is clear that both the wealth and substitution effects lead to a
rise in the long-run wage. There is obviously no long-run effect on the interesti{ed=0. This

completes the proof of Proposition 1(iii}J
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A.5. Proofs of Extensions
All extensions are calculated with the aid of Table A.1l. In all cases we retain all benchmark
assumptions, except for the one whose influence is studied. Only lump-sum taxes so that the

government budget restriction can be ignored, &3=0 for all t.

A.5.1. Ethier Effects
If azag=0.=p, the relative price of new investment goods changes as a result of fiscal policy.

This changes the optimal capital-labour ratio in the long run. In the long run, the key equations
are:

r(oo) _ R(OO), (A9a)

O
R(eo) = @; (A.9Db)

IFED

(A.9¢c)

o«

EIDEIEI

|
) = w0.6(0) + @ f{eo) + H hal
[l O H

Y(@) = pp(l-g)R(®) - (¢-1)E(w), (A.9d)

where we have used the fact thBf(t)-P(t)=(1-a,/p)Y(t). By solving (A.9a-d) for the long-run
output effect, we obtain the expression in (12a).

If ag#z0,=0.=|, the relative price of the public good changes as a result of fiscal policy. In
the long run, the key equations are (A.9a), (A.9d) and

R(w) = (), (A.9€)

ol (A.9)
-2 Hi(e) '

_°
HO

('

o204

0
Yw) = w.E() + 0i(e0) + w(}% .

where we have used the fact tHag(t)-P(t)=(1-a/u)Y(t). By solving (A.9a), (A.9d), and (A.9e-f)
for the long-run output effect, we obtain the expression in (12b).
If ag=0,=0#Y, the relative pricesPg(t)/P(t) and P,(t)/P(t) are both constant but the

aggregate scale economies are now different from y. The key equations are (A.9a), (A.9¢e) and:

Y(0) = 0.C() + 0i(e0) + w,G, (A.99)
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o (1-g) (1 +w, )K(®) -
1+w, (1-0E)

Y(w) = et ), (A9h)

By solving (A.9a), (A.9¢e) and (A.9g-h) for the long-run output effect, equation (12c) in the text is

obtained.

A.5.2. Intratemporal Substitution Effects
If we allow for a general value for the substitution elasticity between composite consumption and

labour supply ¢.,,), the key equations are (A.9a), (A.9¢e), (A.9g) and:

Yeo) = MBI (-6, A )K() — by, X() (A.10a)
1+ eLWwLL (1- “EL)
&) - (0, LW)SA(l e)K(®) + o, (1-pe) X( )D X, (A.10b)
D 1+eLWwLL(1 H‘SL) D

where 6, Z[ w0y tw W, J/[wctw w,]. By using (A.9e) and (A.10a-b) we can expre€&o) in

terms ofY(w) only:

C(oo) _ HJEL Ocm®y lu:(l 8)](1 OCMwLL) B?( ). (A.10c)

By using (A.9a), (A.9e), and (A.10c) in (A.9g) and simplifying, the expression in (13a) is obtained.
If we allow for a general value for the substitution elasticity between capital and labour in

the gross production functior(, ), the key equations are (A.9a), (A.99), and:

H(1-0) (0, +w ) K(®) - pw w, 0, C(e) (A.10d)
+00|_|_[1 -0 (HGKL +1 _GKL)] ’

¥(e) -

> 510 +1-0, 1 (A.10e)
K(o0) = %u%(oo) )

By using (A.10d-e), we can expre§w) in terms of Y(c):

By using (A.9a), (A.99), and (A.10e-f), the expression in (13b) is obtained.
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0
(o0) = - @“*’L ~ (-D[1rw, (0, - D{A-w)] (). (A.10f)
O MO W, O

A.5.3. Mark-up Effects under Free Entry

In the text below equation (15a) it is asserted that the markup has no first-order effect if @ equals
0.=0,=0g initially. It asserted in the text that the markup drops out of both the aggregate
production function and the labour demand function (evencig¥l). This has been shown in the

text for the aggregate productivity index in (15a). For labour demand it is shown as follows. By
solving (A1.11) for N(t) and substituting the result into the general labour demand expression

(Al1.4), we obtain in successive steps:

~ [l 0 k.0 0O .0 o
AL = 1+ Do A0 « B HOF- 3-0-H00- Ano, i
00 Mm-10 0 -1 O

N nl-o,)A-ay
a

On 0,0 .
80 + 2 Hiog- ano Wy -
O th-10 0O K

c

. 0 1-g, H . 1-0,)An-a)H
A n L(t) _ )\ r] %KL . GKL %(t) _ )\ n GKLW(t) 4 @1 ( O‘KL)(f n GJ %l(t)
0 dc [ 0o Y (n-1) 0

_~ U
L 1ac:<|_ é’(t) _ O-KLW(t)i (All)

L@t =

L0

where we have used the fact thathu=(due to free entry) and . (by assumption) in the final
step. Hence, the markup drops out of the labour demand expression eygalif
The only place wheré(f) appears in the model is in equation (A1.10). Hence, the change

in the markup is determined residually under free entry/exit thge, =0 initially.
A.5.4. Mark-up Effects under Restricted Entry

Under restricted entry and with a constant mark-up, the key equations are given by (A.9a), (A.99),

and:

(e) = nK(), (A.12a)

Y(e) = n[W(w) + ()], (A.12b)
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() = w, [W() - E(o0)], (A.12c)

Y(eo) = pe L(w) + (A0 -pe )K(w), (A.12d)
Note that the excess profit ratg, can be written as:

n=__1-1=H _1 (A.12¢e)
TC An
so that, if the economy is initially in a zero-profit equilibrium, 3 and (A.12d) is identical to
(A2.7). Equations (A.12a-b) are, however, still different from the expressions (A2.4) which hold
under free entry/exit.
By combining (A.12a-d) we obtain the following expression €feo):

C( ) = %18 - @- 1)(1+Q)LL) D?( ). (A.12f)
I:J ustLL

Using (A.9a), (A.12f), and (A.12a) in (A.9g), we obtain the expression (15c) in the text.
With a variable markup, (A.12a-b) are replaced by, respectively:

Y(0) = n[K(e) + fi()], (A.129)
Yeo) = n[L(e) + fifeo) + W(eo)), (A.12h)
and (A.12f) becomes:
+ [ + :
&y - QB0 D wLag?() 1§ ana ‘*’L)gn() (A1)
|:| “sl_ LL wLL O

By using (A.9a), (A.12g) and (A.12i) in (A.9g), we obtain the multiplier expression (15h) in the

text.
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A.5.5. No Intertemporal Substitution in Labour Supply
In order to study the crucial role played by the intertemporal substitution effect in labour supply,
we compute the multiplier in the absence of this effect. Instead of using equation (1f) in the text,

we use the following sub-utility function:

R

A.13a)
Ulem L) - o) - Wﬂml . ‘
with 8>0 andy, >0. The units in (A13a) must of course be chosen such W{af>0. This can be
ensured by choosing, appropriately. The Hamiltonian associated with the optimisation problem

faced by the representative consumer can be written as:

|
= I:l y|_ 1+ QD
H() = Iog%:(r) %Hm

(A.13b)

+ AOFOAT + WIL®E) - T() - C)),

whereA,(1) is the co-state variable of the flow budget identity. This leads to the following first-

order conditions:

1 _

S A(D), (A.13c)
VL@ (A.13d)
W - }\A(T)W(T),

P [ -r(D)]A, (). (A.13e)
drt

By eliminating A,(t) from (A.13c-e), we obtain the following expressions characterizing household

behaviour:

W) =y L)%, U@ = [rr)-alu),

- (A.13f)
u@) - ) - g"ﬁ@«rﬂ

The first expression in (A.13f) shows that labour supply only depends on the real wage.

The expressions appearing in (A.13f) can be log-linearized as follows:
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~ ~ - . ~ ~ ~ (A.139)
W(t) = OL(t), U(t) = af(t), w.C(t) = w,U(t) + (g/6) W),

with:

. . . . (A.13h)
UM = dumyu = U, O = duu,  w, = ULY.

The full model consists of the expressions in (A.13g), (A2.1), (A2.4), (A2.5), and (A2.7). Using

the standard solution procedures, the following expressions can be obtained:

Sy - (1.0 — HL+O0x HPe@-g)a-0g, (A.13i)
Y0 - @-oLo - =240 e )

where we assume that the denominator is positive. By using (A.13i) in the second expression of

(A2.4) and in (A2.5), respectively, the following expressions are obtained:

o _ Hadace -@r0)1-a,0-5)]F
af(t) = - S Ek(t),

(A.13))
0
wi(t) - Elﬁ%(t) - 0,00 - w6,
O1+6 g

Finally, by substituting the expressions in (A.13j) into (A2.1) and the second expression in

(A.13g), respectively, the dynamical system #t) and U(t) is obtained:

KOB_ | KOF pede)Gs (A.13K)
YO0 wod g o O

where the Jacobian matrix is:

(A.13])

I
I o o |

0
0
@a - Hiee ~(1+0)[1-a (1-¢)]
0 E 1+0-a.¢

Local stability is again investigated by examining the characteristic rooté.oSaddle point
stability is ensured if the characteristic roots alternate in sign. A necessary and sufficient condition

for saddle-point stability is that the determinantfobe negative:
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5wx(a+6)[acsL - (1+9)[1—ac(1-8L)]] <o (A.13m)

A] =
0[1+6-0acg|

There must be diminishing returns to capital for saddle-point stability to hold.

By using (A.13K) in the steady state, it is clear that an increase in government consumption
does not affect the long-run capital stock at all. By (A.13i-j) it follows that the output employment,
the wage, and the interest rate are unaffected also. The long-run effect on sub-utility is thus

unambiguously negative:

dU(o) _ dC(o) _ (A.13n)
dG dG

Hence, regardless of the intratemporal substitution elasticity of labour su@plyhére is one-for-
one crowding out of private by public consumption. This demonstrates the crucial importance of

the intertemporal substitution effect in labour supply.

A.5.6. Indivisible Labour
In the text it is asserted that Hansen’'s (1985) indivisible labour solution is obtained by setting
W, —%. This can be shown as follows. In the Hansen model, the felicity function of the

representative household is linear in leisure, and the household solves:

[

Max J {Iog C(t) +y, |1~ L(r)]] exga (t-1)]dr

{CO.LO}
(A.14a)
st dg?) - HOA®) + [1-@WD) - T - C).
The first-order conditions for this problem are:
Cm™* = A1), tO[t), (A.14b)
Yy, = AA(r)W(T)[lftL(r)], T0O[t,00), (A.14c)
dAQT(T) - [a @I, 10[t), (A-14d)

whereA (1) is the co-state variable of the flow budget restriction. By using (A.14b) in (A.14c) and
(A.14d), the household’s optimal plans reduce to:
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@ = r(1) -q, (A.14e)
C(1)

¥, C(T) = WD)[1-t,(1)]. (A.14f)

Equation (A.14e) is identical to (T1.2) for the benchmark model (Wiit)=e-X(1)). Equation
(A.14f) can be log-linearized:

C(t) = WD) -T (0. (A.149)

Equation (A.14g) coincides with the expression in (T2.6) &qr — . This proves that setting
w,, — o yields the indivisible labour model]
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Table A.1: Log-Linearized Version of the Complete Model

. N . Al.1
K@® = 8[it) - K@) ALY
. Al.2
X(t) = af(t) (A1.2)
507070 - R0 0 i)
WG +P,M) -P®) | = @ T() + 1-t)w, (t)+ L(t) +W(t) |
il ]
(A1.3)
%P 1% oo
(1+s)F + ®
7 Bsd B
ML) = 1+ -1)0 %0 racn-DR| - Ano i) + n@-0,)A-aN®) - Ano, Wy AL4)
R L) = o o +BO B0 -2 Ho-B-L Hs0 -Bol (ALS)
O +dg ~ [M+d O
0 = ) + wfi) +B®-PO] + wy &1 +Pyt) -PO)| (AL.6)
&) = @, (0q, ~1|WH -E ()] + X) (AL.7)
L) - wLL[[oCMmM(l—oCM)][v”v(t) )] - )?(t)} (AL.8)
YO = (@ AmNE® + po L) + An-pe)KEO (AL.9)
o " = 1O = 6c(oc-09 €t - Y]+ (0, -00)|T() + B, - By - Y| (AL1.10)
i) = E_p_l@acﬂ(t) 0] (AL1.11)
on
PO -P®) = (a.-a)N®, P -P®) = (a.-o)N(®) (A1.12)
Shares and parameters
Wy T/IY. Share of lump-sum taxes in real output.
W, WLUY. Share of before tax wage income in real output.
Wy, Share of gross spending on leisure in full consumptio,=(1-t)w w,/

[ec+(1-4 )y 0, ] and O<woy<1.



n F+Y)Y Scale parameter due to fixed cost. If entry/exit is free thehnu=

Wg GP/PY. Share of government spending on differentiated goods in output.

(VS CIY. Share of private consumption in real output

() IP,/PY. Share of investment spending on differentiated goods in oudpti +ws=1.
W, (2-L)/L Ratio between leisure and labour.

t Proportional tax rate on labour levied on households.
rh=[(a+8)%/(1-€.)][ e(@-1)+pue(1-u(L€)]>O0.

Note:
Under restricted entry/exitN(t)=0, and the zero pure-profit condition (Al1.11) is irrelevant. Under free
entry/exit, simplifications are obtained by noting that\p=



Table A.2: Log-Linearized Version of the Benchmark Model

- . (A2.1)
K@® = 8li) K
. (A2.2)
C(t) = af(t)
. . 0 0 O
WG = @ T(t) + (1-t)e B(t) + % (t + WolH
0 i L0 O
(A2.3)
s 1% Sl
-(1+s)E ¢ ()
0 %D 0
) = Y)W -5 R = vt -2 H +z A2.4
L) = YO -W) +8, KO = YO -5—00+% (A2.4)
M +0[]
Y1) = w.C(t) +w,1(t) +w,G (A2.5)
L = o, [Vt 1,0 -Cet) (A2.6)
Y0 = We L) + @-g)R@) (A2.7)
Definitions
€L WL/Y. Share of before tax wage income in real outputg, 4.
Wy rK/Y. Share of income from financial assets in real outpuirw.+w-(1-t)e and
0, =(1-€)(1+s5)-wy, w,>0.
Wg GlY. Share of government spending on differentiated goods in outguiz<CL.
We Cly. Share of private consumption in real outputuf<1.
() I7Y. Share of investment spending on differentiated goods in outpgt+ws=1,
O<w<1.
W, (1-L)/L Ratio between leisure and labour.
Wr TIY. Share of lump-sum taxes in real outpud,+S,=0+t, €, .
t Proportional tax rate on labour levied on households).
i o(0c-1) Gross markup, p>1.

S Ad valorem product subsidys.=0.



Table A.3: The Effects of Fiscal Policy in the Benchmark Model under Labour Income Taxation

The shock in government spending is normalizechd6=1

Impact Effect(t=0)

Long-Run Effecftt - )

(9-1)(a +9) AL[SL (1-t) _wc]

K 0 r‘h*(w/d)e (1-t)
&) i [sL(l—tL) roe@+3)(@-1)A |+ (9-1)A 1 *~(a +) oocﬂ (@820 D, re (191 -p-¢)]
g (1-t) [wc (9 —1)AL]|’ : r'hi(w/d)e (1-t)
0 (@-1)A e, (1-1) -a|r " +(a +8) (¢-1)] (@-1) (@ +d)A [g (1-1) -0y
sL(l—tL)[wC+((p—1)AL]r : r'‘h"(w/d)e (1-t)
I"‘ t (G +6) ((p_l)AL[SL(l_tL) —(A)C] ((p_l) (G +6)A|_[£|_(1_t|_) _wc]
® g (1-t)wr” r‘h*(w/d)e (1-t)
~ ((p_l)AL[sL(l_tL)_wC][r “+(a +5)((P—1)] (¢-1)(@ +6)A'—[8|—(1_t'—)_wc][l_u(l_eL)]
L(t) :
e’ (1 )] +(@-1)Ar rh (/) pel(1-t)
N (M, ~1)(@-1)A [g, (1-t) —wc][r “+(a+3)(@-1)] H-D@-1)@+dA g (1-t)-w|
W) =
usf(l—tL)[wC+((p—1)AL]r ’ r'h*(w/d)pe (1-t)
0 (p-1)(@+3)A [e (1-1) -@flr (o +8) (1) 0

asL(l—tL)[wc+(cp—1)AL]r :




