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1 Introduction

One of the most robust findings in economic theory is that individuals facing an uncertain

date of death derive substantial benefits from annuitization of savings. In a seminal paper,

Yaari (1965) shows that in the absence of a bequest motive individuals should fully annuitize

all of their savings. One of the key assumptions adopted by Yaari concerns the availability of

actuarially fair annuities. In a recent paper, Davidoff et al. (2005) demonstrate that the full

annuitization result holds in a much more general setting than the one adopted by Yaari, i.e.

it obtains also when annuities are less than actuarially fair.

The objective of this paper is to study the macroeconomic effects of actuarially unfair

annuities. Are the optimal retirement age and the macroeconomic growth rate significantly

affected by the degree of actuarial fairness of annuities or is this imperfection quantitatively

unimportant? To answer this question we construct a stylized overlapping generations model

of a closed economy featuring endogenous growth due to an inter-firm investment externality

of the “AK”-type. Our starting point is the celebrated Blanchard (1985) model. We extend

this model in five directions. First, we endogenize the individual agent’s life-cycle labour

supply decision. Second, we introduce an annuity imperfection parameter which allows us to

study the cases of actuarially fair and unfair annuities in a single framework. In the latter

case annuity firms make profits which are taxed away by the government and transferred

to households. Third, we introduce an asset constraint that disallows agents from holding

negative asset balances. Fourth, we introduce age-dependent labour efficiency. Finally, we in-

corporate the insights of Heijdra and Romp (2008) and postulate an age-dependent mortality

process.

Our main findings are as follows. First, the imperfection on the annuity market leads

individuals to discount future consumption by a term including their mortality rate as well

as their pure rate of time preference. Due to the age-dependent mortality rate this leads to

a hump-shaped consumption profile. This in turn reduces capital accumulation as less assets

are required to finance consumption late in life. The reduction in asset accumulation by

the individual agents leads to lower economic growth on the aggregate level because capital

accumulation is the driving force behind economic development in our model.

Second, in terms of labour supply we find that individuals supply less labour during their

working life but retire slightly later if annuities are less than fair. On the whole this leads to

1



a decrease in aggregate labour supply.

Third, we show that the way in which annuity firms’ profits are redistributed plays an

important role in the analysis. In the baseline analysis we assume that these profits are

transferred equally across all agents. If, however, the profits are redistributed with a skew

toward the young, then growth is slightly higher because young agents are savers. On the

other hand, if profits are distributed toward the elderly growth is slightly lower because the

elderly are dissavers. Finally, if these profits are drained from the economy via wasteful

government consumption, growth deteriorates dramatically and the retirement age is reduced

substantially.

Fourth, our analysis emphasizes the importance of general equilibrium effects. In a pure

partial equilibrium analysis, the impact of imperfect annuities is grossly overestimated because

such an analysis ignores both the redistribution of profits and the response in the economic

growth rate. This finding shows that, as much as macroeconomics should be microfounded,

microeconomics should be macrofounded.

The two papers most closely associated with ours are Bütler (2001) and Hansen and

İmrohoroğlu (2008). Both study the role of annuities for individual consumption decisions

over the life cycle. In addition, Bütler studies endogenous labour supply decisions, though not

in relation to the imperfect annuities market. Hansen and İmrohoroğlu embed their model in a

general equilibrium context but disregard the labour supply decisions made by the individual

agents. In addition they only study the polar cases of perfect and no-annuities in the general

equilibrium model.

We extend the insights of Bütler to the general equilibrium case and explicitly take into

account the impact of imperfect annuities on labour supply and retirement decisions (as

opposed to Hansen and İmrohoroğlu). Furthermore, we also study imperfect annuities in

general equilibrium, not only at the individual level (as in Bütler) or in the absence of annuities

(as in Hansen and İmrohoroğlu).

In addition to the papers of Bütler and Hansen and İmrohoroğlu, there is a substantial

literature studying the partial equilibrium implications of annuity market imperfections. It

is beyond the scope of this paper to give a full review of this literature but is good to alert

the interested reader to Chai et al. (2011). They study a very detailed partial equilibrium

stochastic life-cycle model in which agents feature an endogenous labour supply decision and
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can choose between a variety of assets to invest in. Their findings regarding the retirement

decision fit well with our analysis in the sense that they find that introducing annuities leads

to earlier retirement. However, as we show in this paper, the partial equilibrium literature

might be strongly misleading due its neglect of general equilibrium repercussions.

The remainder of the paper is structured as follows. Section 2 sets out the model, whilst

section 3 discusses how empirical observations are fed into the model. Section 4 studies

the relationship between the annuity market imperfection, the individual life-cycle, and the

macroeconomic growth rate and contains some sensitivity analysis. Section 5 concludes.

2 Model

2.1 Firms

The production side of the model makes use of the insights of Romer (1989) and postulates

the existence of sufficiently strong external effects operating between private firms in the

economy. There is a large and fixed number, N , of identical, perfectly competitive firms. The

technology available to firm i is given by:

Yi (t) = Ω (t)Ki (t)
εK Ni (t)

1−εK , 0 < εK < 1, (1)

where Yi (t) is output, Ki (t) is capital use, Ni (t) is the labour input measured in efficiency

units, and Ω (t) represents the general level of factor productivity which is taken as given by

individual firms. The competitive firm hires factors of production according to the following

marginal productivity conditions:

w (t) = (1 − εK) Ω (t)κi (t)
εK , (2)

r (t) + δ = εKΩ(t)κi (t)
εK−1 , (3)

where κi (t) ≡ Ki (t) /Ni (t) is the capital intensity. The rental rate on each factor is the

same for all firms, i.e. they all choose the same capital intensity and κi (t) = κ (t) for all

i = 1, · · · ,N . This is a very useful property of the model because it enables us to aggregate

the microeconomic relations to the macroeconomic level.

Generalizing the insights of Saint-Paul (1992, p. 1247) and Romer (1989, p. 90) to a

growing population, we assume that the inter-firm externality takes the following form:

Ω (t) = Ω0κ (t)1−εK , (4)
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where Ω0 is a positive constant, κ (t) ≡ K (t) /N (t) is the economy-wide capital intensity,

K (t) ≡
∑

i Ki (t) is the aggregate capital stock, and N (t) ≡
∑

i Ni (t) is aggregate employ-

ment in efficiency units. According to (4), total factor productivity depends positively on

the aggregate capital intensity, i.e. if an individual firm i raises its capital intensity, then all

firms in the economy benefit somewhat as a result because the general productivity indicator

rises for all of them. Using (4), equations (1)–(3) can be rewritten in aggregate terms:

Y (t) = Ω0K (t) , (5)

w (t)L (t) = (1 − εK) Y (t) , (6)

r (t) = r = εKΩ0 − δ, (7)

where Y (t) ≡
∑

i Yi (t) is aggregate output and we assume that capital is sufficiently pro-

ductive, i.e. εKΩ0 − δ > 0. The aggregate technology is linear in the capital stock and the

interest is constant.

2.2 Consumers

From a modeling perspective it is interesting to briefly reflect on the life-cycle elements con-

tained in our model. In Heijdra and Mierau (2009) we used the perpetual youth model

with constant productivity as a starting point. From there onward we introduced the age-

dependent mortality and productivity first separately and then, as in the current paper,

simultaneously. Using that approach, we could highlight that both life-cycle elements are

critical for the analysis. For instance, in the presence of only imperfect annuities, an age-

dependent mortality profile would lead agents to re-enter the labour market very late in

life. This is because the labour supply profile is the inverse of consumption profile. If age-

dependent productivity is also added to the model, labour market re-entry will no longer

occur because the wage against which agents are giving up leisure late in life is too low. In

addition, we found that the perpetual youth model substantially overestimates the impact of

annuity market imperfections. This is due to that fact that it gives a strong weight to old

agents who, in that model, posses a substantial amount of assets. In contrast, in a model

with age-dependent mortality the elderly are decumulating assets and only relatively few of

them are around.
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2.2.1 Individual behaviour

We generalize the model by Heijdra and Romp (2008) by including an endogenous labour-

leisure decision, by recognizing age-dependent productivity, and by assuming potentially im-

perfect annuity markets. At time t, expected remaining-lifetime utility of an individual born

at time v (v ≤ t) is given by:

EΛ (v, t) ≡

∫ v+D̄

t

ln
[

C(v, τ)εC · [1 − L(v, τ)](1−εC)
]

· e−ρ(τ−t)+M(t−v)−M(τ−v)dτ, (8)

where C (v, τ) is consumption, L (v, τ) is labour supply (the time endowment is equal to unity),

ρ is the pure rate of time preference, D̄ is the maximum attainable age, and eM(t−v)−M(τ−v)

is the conditional probability that the agent of age t − v is still alive at age τ − v (with

τ ≥ t). Note that M (x) ≡
∫ x

0 µ (s) ds is the cumulative mortality rate whilst µ (s) is the

instantaneous mortality rate of an individual of age s. This rate is strictly increasing and

convex in age, µ′ (s) > 0 and µ′′ (s) > 0, and features lims→D̄ µ (s) = +∞.

The agent’s budget identity is given by:

Ȧ(v, τ) = rA (τ − v)A(v, τ) + w(v, τ)L (v, τ) − C(v, τ) + TR (v, τ) , (9)

where A (v, τ) is the stock of financial assets, rA (τ − v) is the age-dependent rate of interest

on annuities, w (v, τ) ≡ w (τ)E (τ − v) is the age-dependent wage rate, E (τ − v) is the exoge-

nous labour productivity profile, and TR (v, τ) are lump-sum transfers from the government

(see below).

Earlier studies argue that productivity is positive and hump-shaped over the life-cycle

– see, e.g., Hansen (1993) and Rios-Rull (1996). In terms of E (τ − v) this implies that

E (τ − v) > 0, E′ (τ − v) > 0 for τ − v < ū and E′ (τ − v) < 0 for τ − v > ū, where ū is the

age at which labour productivity is at its peak.

Following Yaari (1965), we postulate the existence of annuity markets, but unlike Yaari

we allow the annuities to be less than actuarially fair. Since the agent is subject to lifetime

uncertainty and has no bequest motive, he/she will fully annuitize so that A (v, τ) also rep-

resents the demand for annuities and the annuity rate of interest facing the agent is given

by:

rA (τ − v) ≡ r + θµ (τ − v) , (10)
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where r is the time-invariant real interest rate (see, equation (7)) and θ is a parameter

(0 < θ ≤ 1). In addition, we assume that there is no market for life-insured loans, i.e. the

demand for annuities must be non-negative at all times:

A (v, τ) ≥ 0. (11)

Our specification for the annuity rate in (10) can be rationalized in three ways. First, 1−θ

may be interpreted as a load factor needed to cover the administrative costs of organizing the

annuity firm – see Horneff et al. (2008, p. 3595). Second, as Hansen and İmrohoroğlu (2008, p.

569) suggest, θ may represent the fraction of assets that are annuitized. Provided θ is strictly

less that unity, there will be unintended bequests under this interpretation. Third, annuity

firms may possess some market power, allowing them to make a profit by offering a less than

actuarially fair annuity rate. In this paper we adopt the market-power interpretation. We

shall refer to 1 − θ as the degree of imperfection in the annuity market.

Our specification is very general and incorporates two important cases:

• Perfect annuities (PA): The case of perfect (actuarially fair) annuities is obtained by

setting θ = 1. Annuity companies break even, and TR (v, τ) = 0.

• Imperfect annuities (IA): The case of imperfect (less than actuarially fair) annuities is

obtained by assuming 0 < θ < 1. Annuity firms make excess profits which are taxed

away by the government and distributed in a lump-sum fashion to surviving agents.1

The agent chooses time profiles for C (v, τ), A (v, τ), and L (v, τ) (for τ ≥ t) in order

to maximize (8), subject to (i) the budget identity (9), (ii) the initial asset position in the

planning period, A (v, τ) and (iii) the borrowing constraint (11).

We restrict attention to the optimal individual life-cycle decisions in the context of an

economy moving along the steady-state balanced growth path. Along this path, labour pro-

ductivity grows at a constant exponential rate, γ (see below), and individual agents face the

1Naturally, if θ = 0 there no longer exists an annuities market. In that case it is not the profits of the annuity

firms that are being redistributed but accidental bequests. Leung (1994) shows that for the no annuities case

agents hit the asset constraint (11) towards the end of their life. Simulations, however, show that this point is

extremely close to the maximum attainable age, D̄. So close, indeed, that the probability of actually hitting

it is negligible. For this reason we ignore the case with θ = 0 in this paper.
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following profile for real wages over their lifetimes:

w (v, τ) = w (v) E (τ − v) eγ(τ−v). (12)

Using (12) we can define the scaled wage rate facing individuals aged u = τ − v :

w (v, v + u)

w (v)
= E (u) eγu. (13)

Whereas the unscaled wage rate, w (v, τ) , is both time- and age-dependent, the scaled

wage rate, w (v, τ) /w (v) only depends on the individual’s age, u. Effectively, the wage rate

at birth, w (v) , acts as a scale factor that pins down the individual’s initial condition.

With imperfect annuities (0 < θ < 1) we must confront the issue of redistribution of excess

profits and recognize the fact that TR (v, τ) will be positive in general. To keep things simple

we assume that the transfers are set according to TR (v, τ) = z · w (τ) · eφ(τ−v) or:

TR (v, v + u)

w (v)
= z · e(φ+γ)u, (14)

where z is a positive indexing parameter which is taken as given by individual agents but

determined endogenously in general equilibrium via the balanced budget requirement of the

redistribution scheme (see, equation (T1.5)). The parameter φ determines the skew of the

transfers, where φ = 0 implies a neutral regime, whereas φ > 0 implies a skew toward the

elderly and φ < 0 implies a skew toward the young. In the remainder of this section we focus

on the neutral case with φ = 0.

Agents pass through three regimes over their life-cycle, depending on whether or not the

asset constraint is binding and whether or not the agent is retired. We demark the three

regimes by calling the age at which the asset constraint no longer holds Fb and calling the

age at which agents retire R. Using these dates in combination with the age at birth (0) and

the maximum attainable age (D̄) we can describe the regimes as follows:

• Regime 1: For 0 ≤ u < Fb the asset constraint is binding and labour supply is positive.

• Regime 2: For Fb ≤ u < R the asset constraint is not binding and labour supply is

positive.

• Regime 3: For R ≤ u ≤ D̄ the asset constraint is not binding and labour supply is zero.
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The life-cycle consumption-leisure choice is illustrated in Figure 1, where C (v, v + u) /w (v)

and L (u) stand for, respectively, scaled consumption and labour supply of an agent at age

u. The left-hand panel shows the choices made by asset constrained agents whereas the

right-hand panel shows the choices of the agents that are not asset constrained.

During Regime 1 the agent equates the marginal rate of substitution between leisure

and consumption to the scaled wage rate,

1 − εC

εC

C (v, v + u) /w (v)

1 − L (u)
=

w (v, v + u)

w (v)
, (15)

but faces a binding asset constraint which implies a flow constraint on scaled full consumption,

X(v,v+u)
w(v) :

[

X (v, v + u)

w (v)
≡

]

C(v, v + u)

w (v)
+

w (v, v + u)

w (v)
[1 − L (u)] =

w (v, v + u)

w (v)
+

TR (v, v + u)

w (v)
. (16)

Solving (15)–(16) gives the consumption and labour supply profiles in the asset constrained

regime:

C(v, v + u)

w (v)
= εC

[

w (v, v + u)

w (v)
+

TR (v, v + u)

w (v)

]

, (17a)

L (u) = εC − (1 − εC)
TR (v, v + u)

w (v, v + u)
. (17b)

Figure 1(a) can be used the illustrate the mechanisms at work. MRSC(0) and BC(0) de-

pict, respectively, equations (15) and (16) evaluated at birth (u = 0). Ideally, the agent would

like to operate along the budget curve BC′
0, postpone labour market entry (i.e. set L (0) = 0)

and consume at point A. But full consumption at that point is X (v, v) = w (v, v) / (1 − εC)

which exceeds the available income w (v, v) + TR (v, v), i.e. point A is unattainable due to

the borrowing constraint. The best choice available to the agent is at point E0, described by

the expressions in (17).

Over time, X (v, v + u) /w (v) increases because the agent’s productivity, and therefore,

w (v, v + u) increases in the initial part of the life-cycle (see, equation (13)). The increase

in the wage rate causes relative transfers TR (v, v + u) /w (v, v + u) = z/E (u) to fall and,

hence, labour supply to increase. This process is illustrated by the shifts of the BC and

MRSC curves for increasing ages u1 and u2. Of course, in the absence of transfers (i.e. if

annuities are perfect), the optimal choices lie along the dotted line through E0 as income and

substitution effects of scaled wage changes on labour supply exactly cancel out. In contrast,
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with positive transfers (i.e. imperfect annuities) the substitution effect dominates the income

effect so that both consumption and labour supply increase with age in Regime 1 – see points

E1 and E2.

Figure 1: Consumption and leisure choices over the life cycle

(a) Regime 1 (b) Regimes 2-3

0 ≤ u ≤ Fb Fb ≤ u ≤ D̄

0 1 ! L(u)

C(v,v+u)
w(v)

1

!

!

E0

!

BC(0)

!

MRSC(0)  

E1 A

BC0

�
1 ! L(0)

!

!E2

MRSC(u1)  
BC(u1)

BC(u2)

MRSC(u2)  

0 1 ! L(u)1

!

!

!

E3

!

!

BC(uL)
E1

!

E2

E0

C(v,v+u)
w(v) MRSC(R) 

MRSC(uL) 

BC(R)

The agent remains in the asset-constrained regime as long as consumption growth satisfies

the following inequality:

Ċ (v, v + u)

C (v, v + u)
> r − ρ − (1 − θ)µ (τ − v) , (18)

that is, as long as consumption grows faster than it would in the non-constrained regime (see

equation (22) below). Using (17a) and noting (13) and (14), we find that actual consumption

growth in this regime equals:

Ċ (v, v + u)

C (v, v + u)
= γ +

Ė (u) + φ · z · eφu

E (u) + z · eφu
(19)

Combining (18) and (19) we find that Regime 1 exists provided:

γ +
Ė (0) + φ · z

E (0) + z
> r − ρ − (1 − θ)µ (0) (20)

and that Regime 2 is entered for the lowest u = Fb such that:

γ +
Ė (Fb) + φ · z

E (Fb) + z
= r − ρ − (1 − θ) µ (Fb) . (21)
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The relationships in (20) and (21) allow us to establish that, ceteris paribus, imperfect an-

nuities increase (i) the likelihood of being asset constrained and (ii) the length of the asset

constrained period. In general equilibrium, however, this relationship is moderated by the

impact of annuity market imperfections on the macroeconomic variables z and γ and by the

redistribution parameter φ.

In Regime 2 the agent still sets labour supply according to (15) but is no longer asset

constrained and chooses optimal (full) consumption growth according to the well-known Euler

equation:

Ċ (v, v + u)

C (v, v + u)
=

Ẋ (v, v + u)

X (v, v + u)
= r − ρ − (1 − θ)µ (τ − v) . (22)

Observe that with imperfect annuities, (full) consumption growth is affected by the mortality

rate, a result first demonstrated for the case with θ = 0 by Yaari (1965, p. 143). Optimal

choices for scaled consumption and labour supply are given by:

C (v, v + u)

w (v)
=

C̃ (v, v)

w (v)
e(r−ρ)u−(1−θ)M(u), (23a)

C̃ (v, v)

w (v)
≡

C (v, v + Fb)

w (v)
e−(r−ρ)Fb+(1−θ)M(Fb), (23b)

L (u) = 1 −
1 − εC

εC

C (v, v + u)

w (v, v + u)
, (23c)

where C̃ (v, v) /w (v) is the hypothetical level of consumption at birth that would have pre-

vailed if the agent would not have been credit constrained, i.e. if (22) had been relevant right

from the agent’s birth date.

Taking the time derivative of (23c) we obtain the labour supply dynamics:

L̇ (u) =
1 − εC

εC

C (v, v + u)

w (v, v + u)

[

γ +
Ė (u)

E (u)
+ ρ + (1 − θ) µ (u) − r

]

(24)

where the term in brackets represents the difference between wage and consumption growth.

During the initial phase of Regime 2, wage growth outstrips consumption growth and labour

supply increases with age. Labour supply peaks at age uL such that γ + Ė(uL)
E(uL) + ρ +

(1 − θ)µ (uL) = r and falls thereafter. The maximum at uL is unique because mortality

rate does not rise very fast during Regime 2 (see Figure 2(a)) and productivity is single

peaked (see Figure 2(b)). Eventually, labour supply becomes zero and the agent retires.
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Figure 1(b) can be used to illustrated the later phase of the agent’s employment spell.

Labour supply is at its maximum at point E0 where MRSC(uL) and BC(uL) intersect. As the

agent gets older, the budget curve gradually shifts in a north-easterly direction and becomes

steeper as scaled wages continue to rise. Retirement takes place at point E1, where MRSC(R)

and BC(R) intersect.

In Regime 3 the agent no longer participates in the labour market so (15) is not relevant

anymore. Scaled consumption, C (v, v + u) /w (v), still grows according to the Euler equation

in (22). In this regime the agent’s consumption is financed out of his financial assets comple-

mented with government transfers (if annuities are imperfect). In terms of Figure 1(b), after

retirement consumption gradually moves from E1 to E2.

If annuities are imperfect, the sharp increase in mortality towards the end of life gradu-

ally reduces the growth rate of consumption and, eventually, leads to a decrease in consump-

tion. Indeed, as is clear from (22) consumption reaches its maximum at age uC which is

defined implicitly in µ (uC) = (r − ρ) / (1 − θ) . Since µ′ (u) > 0 we find that duC/dθ > 0 and

duC/d (r − ρ) > 0. Hence, the smaller is θ or r − ρ, the lower the age at which consumption

peaks. In terms Figure 1(b), uC is at point E2. Beyond that point consumption rapidly

decreases and moves toward E3. Financial assets are slowly decumulated and – provided the

agent lives long enough – run out at the maximum attainable age D̄.

The fact that both consumption and labour supply are smooth over the life-cycle allows us

to determine Fb, R and C̃ (v, v) /w (v) as an implicit system of equations that only takes the

parameters and macroeconomic variables (γ and z) as input. For convenience we summarize

all equations necessary to solve the model in Table 1.

For Fb, observe that consumption at the end of the constrained regime must coincide with

consumption at the beginning of the unconstrained regime. That is, (17a) must equal (23a)

at Fb, which, using (13), gives equation (T1.2).2 To obtain (T1.3) we note that L (R) = 0

and use (23a)–(23c) which gives an expression relating R to Fb and C̃ (v, v) /w (v) . Finally,

in (T1.1) we notice that C̃ (v, v) /w (v) itself is determined by integrating (9) from Fb to D̄

and substituting (15) and (22).

The system of equations (T1.1)–(T1.3) allows us to observe that Fb, R, and C̃ (v, v) /w (v)

are independent of v. We summarize this important result in the following proposition.

2Alternatively we could have (21) which is the time-derivative of (T1.3).
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Proposition 1 Consider lump-sum redistribution of excess profits of life-insurance compa-

nies, of the form TR (v, t) = z · w (t) · eφ(t−v) and productivity, E (t − v) , and mortality

profiles, M (t − v) , that are independent of v. In that case: (i) Fb is independent of v; (ii) R

is independent of v; (iii) C̃ (v, v) /w (v) is independent of v.

Proof. Observe that only age s appears in (T1.1)–(T1.3) but not v.

2.2.2 Aggregate household behaviour

In this subsection we derive expressions for per-capita average consumption, saving, and

labour supply. As is shown in Heijdra and Romp (2008, p. 94) the demographic steady-state

equilibrium has the following features:

1

β
=

∫ D̄

0
e−πs−M(s)ds (25a)

p (v, t) ≡
P (v, t)

P (t)
≡ βe−π(t−v)−M(t−v) (25b)

where β is the crude birth rate of the population, p (v, t) and P (v, t) are, respectively, the

relative and absolute size of cohort v at time t ≥ v, and P (t) is the population size at time t.

For a given birth rate, equation (25a) determines the unique population growth rate consistent

with the demographic steady-state or vice verse. The average population-wide mortality rate,

µ̄, follows residually from the fact that π ≡ β − µ̄.

Due to the existence of asset-constrained agents we must define two different types of per

capita aggregate values. On the one hand, there are per capita averages relating to the full

population which we define generically as:

b (t) ≡

∫ t

t−D̄

p (v, t)B (v, t) dv, (26)

where B (v, t) denotes the variable in question at the individual level, and b (t) is the per

capita average value of that same variable. On the other hand, there are per capita averages

relating only to the non-asset constrained population which we define as:

b̂ (t) ≡

∫ t−Fb

t−D̄

p (v, t)B (v, t) dv. (27)

Using (23a) in combination with (25b) and (27) we can write per capita average consump-

tion of the non-asset constrained population as (T1.10). Efficiency units of labour of vintage
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t − v are defined as N (t − v) ≡ E (t − v) L (v, t) . Using this expression as well as (17) and

(23) allows us to write per capita average supply of labour as in (T1.8), where n̂ is defined

in (T1.9) and is the per capita average supply of labour by non-asset constrained population.

The maximum labour potential in the economy is given by n̄ ≡ β
∫ D̄

0 E (s) e−πs−M(s)ds. The

various elements in (T1.8) and (T1.9) provide the rational for why actual labour supply, n,

falls short of n̄. First, as indicated by the first composite term in (T1.9), agents only work

for a part of their lives. After age R they consume their full time-endowment in the form of

leisure. Second, as indicated by the second composite term in (T1.9), during their productive

career, workers never supply their full time-endowment. Finally, as indicated by second and

third element in (T1.8), during the asset constrained period workers only supply as much

labour as is strictly necessary to cover current consumption.

Regarding assets, we observe that â (t) = a (t) because – by definition – asset-constrained

agents have no assets. Using (26) we can define per capita average assets as a (t) ≡
∫ t

t−D̄
p (v, t)

A (v, t) dv, so that their rate of change is given by:

ȧ (t) =

∫ t−Fb

t−D̄

p (v, t) Ȧ (v, t) dv −

∫ t−Fb

t−D̄

[π + µ (t − v)] A (v, t) dv, (28)

where we have used the fact that up until Fb agents have zero assets and that they de-

plete their assets at D̄. Furthermore, the relative cohort size evolves according to ṗ (v, t) =

− [π + µ (t − v)] p (v, t) . Using (9) and (11) we find that:

ȧ (t) = (r − π) a (t) + w (t) n̂ − ĉ (t)

+

∫ t−Fb

t−D̄

p (v, t)TR (v, t) dv − (1 − θ)

∫ t−Fb

t−D̄

p (v, t)µ (t − v)A (v, t) dv. (29)

The balanced-budget requirement for the redistribution scheme is given by:

∫ t

t−D̄

p (v, t)TR (v, t) dv = (1 − θ)

∫ t−Fb

t−D̄

p (v, t)µ (t − v) A (v, t) dv. (30)

Hence, we can rewrite (29) as:

ȧ (t) = (r − π) a (t) + w (t) n̂ − ĉ (t) −

∫ t

t−Fb

p (v, t)TR (v, t) dv. (31)

Like in the standard case with perfect annuities, the aggregate per capita annuity receipts,

θ
∫ t−Fb

t−D̄
p (v, t)µ (t − v) A (v, t) dv, do not feature directly in (31) because they constitute pure

transfers from the dead to the living. In each period, life insurance companies receive
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∫ t−Fb

t−D̄
p (v, t)µ (t − v)A (v, t) dv from the estates of the deceased and pay θ

∫ t−Fb

t−D̄
p (v, t)µ (t − v)

A (v, t) dv to their surviving customers. The resulting profit, (1 − θ)
∫ t−Fb

t−D̄
p (v, t)µ (t − v)

A (v, t) dv, is taxed away by the government and redistributed to the surviving agents. A

lion’s share of the transfers constitute a transfer between agents that are not asset con-

strained and debudget from the per capita average asset accumulation equation. Some of the

transfers,
∫ t

t−Fb
p (v, t)TR (v, t) dv, flow to the asset-constrained agents and, therefore, retard

aggregate capital accumulation. Finally, using (14) in (30) we can write the value of the

redistribution rate, z, implicitly as in (T1.5).

2.3 Balanced growth path

In the absence of government bonds, the capital market equilibrium condition is given by

A (t) = K (t). In per capita average terms we thus find:

a (t) = k (t) (32)

where k (t) ≡ K (t) /P (t) is the per capita stock of capital. From (5)–(6) we easily find:

y (t) = Ω0k (t) , (33a)

w (t)n (t) = (1 − εK) y (t) , (33b)

where y (t) ≡ Y (t) /P (t) is per capita output. The expression in (33b) highlights the necessity

of considering both n and n̂ as aggregates. While n is the amount of labour that is relevant for

the production process, n̂ is the amount of labour that is relevant for the capital accumulation

process (see, equation (31)).

The macroeconomic growth model has been written in compact form in Table 1. For

the microeconomic part, equations (T1.1)–(T1.3) have been discussed above. The scaled

asset path, (T1.4), has been derived by solving (9) and features two branches depending

on the agent’s life-cycle phase. Equation (T1.6) is (31) with (32) imposed and (14) and

(25b) substituted in, whilst (T1.7) is (33b) with (33a) substituted in. Finally, also equations

(T1.8)–(T1.10) have been discussed above.

The model features a two-way interaction between the microeconomic decisions and the

macroeconomic outcomes. Equations (T1.1)–(T1.4) determine C̃ (v, v) /w (v) , Fb, R and the

life-cycle path for assets as function of the macroeconomic variables. Equations (T1.5)–
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(T1.10) determine z, γ, w (t) /k (t) , n, n̂ and ĉ (t) /w (t) as a function of the microeconomic

variables.

3 Parameterization

The key virtue of our model is that it allows us to pinpoint the various places where life-cycle

elements affect individual choices and aggregate outcomes. The model contains two features

that independently, but also jointly, give rise to life-cycle effects. First, the mortality process

is age-dependent. That is, the instantaneous and cumulative hazard rates (µ (u) and M (u))

are both age-dependent. Second, labour productivity (E (u)) depends on the worker’s age. In

the remainder of this section we add empirical content to the model by estimating the main

features of the two life-cycle processes and embedding the model in a realistic macroeconomic

environment.

To capture the salient features of the demographic process we use the demographic model

suggested by Boucekkine et al. (2002). In this model, the surviving fraction up to age u

(from the perspective of birth) is given by:

1 − Φ(u) ≡
η0 − eη1u

η0 − 1
, (34)

with η0 > 1 and η1 > 0. For this demographic process, D̄ = (1/η1) ln η0 is the maximum

attainable age, whilst the instantaneous mortality rate at age u is given by:

µ (u) ≡
Φ′ (u)

1 − Φ(u)
=

η1e
η
1
u

η0 − eη
1
u
. (35)

Thus, the mortality rate is increasing in age and becomes infinite at u = D̄.

Following Heijdra and Romp (2008), we use mortality data from age 18 onward for the

Dutch cohort that was born in 1960 and estimate the parameters of the mortality function

(34) by means of non-linear least squares. We find the following estimates (with t-statistics

in brackets): η̂0 = 122.643 (11.14), η̂1 = 0.0680 (48.51). The standard error of the regression

is σ̂ = 0.02241, and the implied estimate for D̄ is 70.75 in economic years (i.e., the maximum

age in biological years is 88.75). Figure 2(a) depicts the actual and fitted survival rates with,

respectively, solid and dashed lines. Up to age 69, the model fits the data rather well. For

higher ages the fit deteriorates as the model fails to capture the fact that some people are

expected to live to very ripe old ages in reality.
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Table 1: Balanced growth and retirement with age-dependent productivity and mortality

(a) Microeconomic relationships:†

C̃ (v, v)

w (v)
· ∆ =

∫ R

Fb

E (s) e−(r−γ)s−θM(s)ds + z ·

∫ D̄

Fb

e−(r−γ−φ)s−θM(s)ds (T1.1)

with ∆ ≡

[

∫ D̄

Fb

e−ρs−M(s)ds +
1 − εC

εC

∫ R

Fb

e−ρs−M(s)ds

]

C̃ (v, v)

w (v)
= εC

[

E (Fb) + z · eφFb

]

e−(r−ρ−γ)Fb+(1−θ)M(Fb) (T1.2)

C̃ (v, v)

w (v)
=

εC

1 − εC
E (R) e−(r−ρ−γ)R+(1−θ)M(R) (T1.3)

e−ru−θM(u) A (v, v + u)

w (v)
=

[
∫ u

Fb

E (s) e−(r−γ)s−θM(s)ds

−
1

εC

C̃ (v, v)

w (v)

∫ u

Fb

e−ρs−M(s)ds + z ·

∫ u

Fb

e−(r−γ−φ)s−θM(s)ds

]

(T1.4a)

=

[

C̃ (v, v)

w (v)

∫ D̄

u

e−ρs−M(s)ds − z ·

∫ D̄

u

e−(r−γ−φ)s−θM(s)ds

]

(T1.4b)

(b) Macroeconomic relationships:

z ·

∫ D̄

0
e−(π−φ)s−M(s)ds = (1 − θ)

∫ D̄

Fb

e−(π+γ)s−M(s)µ (s)
A (v, v + s)

w (v)
ds (T1.5)

γ =
k̇ (t)

k (t)
= r − π +

[

n̂ −
ĉ (t)

w (t)
− βz

∫ Fb

0
e(φ−π)s−M(s)ds

]

·
w (t)

k (t)
(T1.6)

w (t)n

k (t)
= (1 − εK) Ω0 (T1.7)

n = n̂ + βεC

∫ Fb

0
e−πs−M(s)E (s) ds − β (1 − εC) z

∫ Fb

0
e(φ−π)s−M(s)ds (T1.8)

n̂ = β

∫ R

Fb

e−πs−M(s)E (s) ds

−
1 − εC

εC

C̃ (v, v)

w (v)
β

∫ R

Fb

e(r−π−ρ−γ)s−(2−θ)M(s)ds (T1.9)

ĉ (t)

w (t)
≡

C̃ (v, v)

w (v)
β

∫ D̄

Fb

e(r−π−ρ−γ)s−(2−θ)M(s)ds (T1.10)

†The expressions (T1.4a)-(T1.4b) are valid for, respectively, Fb ≤ u < R and R ≤ u ≤ D̄.
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Figure 2: Life-cycle features

An analytically useful age profile for productivity involves exponential terms:

E (u) = α0e
−ζ

0
u − α1e

−ζ
1
u, (36)

where E (u) is labour productivity of a u-year old worker. Assuming that α0 > α1 > 0,

ζ1 > ζ0 > 0, and α1ζ1 > α0ζ0, we easily find that the labour productivity profile adheres to

the properties outlined above. That is, labour productivity is non-negative throughout life,

starts out positive, is rising during the first life phase, and declines thereafter.

Using cross-section efficiency data for male workers aged between 18 and 70 from Hansen

(1993, p. 74) we find the solid pattern in Figure 2(b). We interpolate these data by fitting

equation (36) using non-linear least squares. We find the following estimates (t-statistics

in brackets): α0 = 4.494 (fixed), α̂1 = 4.010 (71.04), ζ̂0 = 0.0231 (24.20), and ζ̂1 = 0.050

(17.81). The fitted productivity profile is illustrated with dashed lines in Figure 2(b).

The remainder of the model is parameterized to replicate the macroeconomic features

of the Netherlands. In this respect we take the population growth rate to be 0.5%. For the

process described in (35) the demographic steady-state (25a) yields a birth rate of β = 0.0204.

Since µ̄ ≡ β − π, this implies that the average mortality rate is µ̄ = 0.0154. Capital receives

roughly one third of aggregate output, therefore, εK = 1
3 , the long-run real interest rate is

4% per year (r = 0.04) and capital depreciates at a rate of 6% per year (δ = 0.06). Using (7)

the combination of εK , r and δ imply an aggregate productivity index equal to Ω0 = 0.3. The

17



Table 2: Parameter values in the core model

Description Parameter Value

Crude birth rate β 0.0204

Aggregate mortality rate µ̄ 0.0154

Population growth rate π ≡ β − µ̄ 0.0050

Rate of interest r 0.0400

Pure rate of time preference ρ 0.0231

Capital depreciation rate δ 0.0600

Capital share parameter εK 0.3333

Consumption taste parameter εC 0.0733

Production function constant Ω0 0.3000

steady-state growth rate of the economy is 2% per year (γ = 0.02). We use the time-preference

rate ρ and the consumption taste, εC , as calibration parameters to give an implied economic

retirement age, R, of 47, which implies a biological retirement age of 65, the eligibility age

for social security in the Netherlands. All the parameter values are summarized in Table 2

for convenience.

For the core model we assume that annuities are perfect (PA, with θ = 1) and illustrate the

optimal life-cycle choices in Figure 3. Figure 3(a) shows the life-cycle pattern of consumption.

The dashed line, labeled KCF can be used to illustrate the implications of the asset-constraint

over the life-cycle. KCF is the ”Keynesian consumption function” faced by the agent at

the start of life resulting from the binding borrowing constraint in combination with active

labour market participation. Mathematically, KCF is given by (17a) above. Up until age

Fb = 18.5 the optimal consumption path coincides with KCF but thereafter the paths diverge

because the agent becomes a net saver. A disturbing feature of the consumption profile

is that it predicts that consumption will increase indefinitely over the life-cycle whereas in

reality consumption is hump shaped (Alessie and de Ree, 2009; Gourinchas and Parker, 2002;

Fernández-Villaverde and Krueger, 2007).. However, the discussion surrounding (22) above

and the numerical simulation below reveal that the introduction of imperfect annuities can
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easily remedy this caveat.

Figure 3(b) shows the age pattern of labour supply. Labour market entry is immediate

and due to the absence of transfers labour supply remains constant until the agent reaches

age Fb (see the discussion surrounding (17b) above). Beyond Fb labour supply follows a

hump-shaped path, reaching its maximum at age uL = 27.9 and retirement setting in at age

R = 47 as calibrated. The labour supply profile is broadly consistent with the United States

evidence presented by McGrattan and Rogerson (2004).

Figure 3(c) depicts the scaled asset profile. Naturally, until age Fb assets are zero because

the agents are asset constrained. In fact, agents would like to borrow at this stage but are

barred from doing so by the asset constraint. After Fb assets follow a typical life-cycle pattern

(see, Huggett, 1996), reaching their peak at uA = 44.7 (just ahead of retirement) and dropping

thereafter so that they run out exactly at the maximum attainable life-time, D̄.

Finally, Figure 3(d) shows the combined consumption and labour supply choices made

over the life-cycle with arrows giving the direction through time. This figure provides the

calibrated equivalent to the discussion surrounding Figure 1 above. Segment A through B

gives the choice during the asset constrained period. After that, labour supply increases

rapidly until point C from whereon it declines. Retirement occurs at D where the agent

consumes the full time endowment in the form of leisure.

Table 3(a) summarizes the main features of the core-model. With perfect annuities, there

are no transfers because annuity firms are breaking even (z = 0). The macroeconomic growth

rate is two percent as calibrated.

4 The individual life-cycle, growth and annuities

In this section we consider the general equilibrium impact of imperfect annuity markets.

Instead of setting θ = 1, we simulate the model with a value of θ = 0.7. This degree of

imperfection of the annuity market follows from the empirical analysis of Friedman and War-

shawsky (1988, p. 59) who estimate a load factor of 48 cents per dollar of expected present

value. They suggest that 15 cents of this amount may be due to adverse selection and the

remaining 33 cents due to costs, taxes, and profit. We assume that the profits made by the

annuity firms are redistributed equally to all agents (denoted by TA). In terms of (14) this

means that φ = 0. In the sensitivity analysis in subsection 4.1 we consider different degrees of
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Figure 3: Optimal life-cycle plans with perfect annuities
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Table 3: Growth and retirement: quantitative effects

(a) (b) (c) (d) (e) (f)

PA TA TY TO WE TA (θ = 1
2)

C̃ (v, v)

w (v)
0.1044 0.1009 0.1010 0.1006 0.0856 0.0985

Fb + 18 (years) 36.48 35.87 35.91 35.81 31.01 35.40

R + 18 (years) 65 66.25 66.44 66.02 57.13 68.06

z (g) 0 0.0019 0.0026 0.0012 (0.0025) 0.0029

γ (×100%) 2.00 1.81 1.82 1.80 1.22 1.68

w (t)

k (t)
2.4449 2.4956 2.4955 2.4956 2.5518 2.5268

n 0.0818 0.0801 0.0801 0.0801 0.0784 0.0792

n̂ 0.0523 0.0524 0.0525 0.0523 0.0591 0.0526

ĉ (t)

k (t)
0.0564 0.0565 0.0564 0.0566 0.0686 0.0568

annuity market imperfection and different assumptions regarding the redistribution of profits.

The quantitative impact of the annuity market imperfection is visualized in Table 3(b)

and Figure 4. Figure 4(a) shows the consequences of the annuity market imperfection for

individual life-cycle consumption. The solid line gives the perfect annuity market equilibrium

as a benchmark and the dashed line shows the imperfect annuity market equilibrium. In line

with the discussion surrounding (22) we find that consumption now becomes hump-shaped

over the life-cycle. This implies that by introducing an annuity market imperfection the model

is able to yield a more realistic consumption profile.

Figure 4(b) exhibits the consequences of imperfect annuities for labour supply. As be-

fore, the solid line is the perfect annuities equilibrium and the dashed line is the imperfect

annuities equilibrium. As can be seen, labour supply is now slightly increasing during the

asset constrained regime because relative transfers are decreasing. Over the remainder of the

life-cycle, labour supply is somewhat less than before but retirement is now marginally later.

The asset constraint, on the other hand, is binding for a shorter length of time. Below, in

Table 4, we study the effects of the imperfection on retirement and the asset constraint in
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more detail.

Figure 4(c) maps out the asset path. Asset accumulation starts slightly earlier and over

the life-cycle agents accumulate less capital. The decrease in capital accumulation can be

traced to two factors. First, less assets need to be accumulated for consumption in old age

because agents now have a hump-shaped consumption profile. In addition, the individual

agent’s income declines due to the decrease in the return on savings and the decline in the

growth rate of output and wages (see below).

Finally, 4(d) traces the consumption-leisure choice over the life-cycle. For the sake of

clarity we only show the equilibrium path from the imperfect annuity equilibrium. Along the

trajectory between A and B labour supply increases slightly. From point B to point D (i.e.

from Fb to R) the agent behaves roughly as in the perfect annuity equilibrium. However,

after point D consumption now increases for a little while longer and reaches its maximum

at E after which consumption drops.

In Table 3(b) we also report the macroeconomic consequences of the annuity market

imperfection. Naturally, due to the profits made by annuity firm, the redistribution parameter

now becomes positive. As a consequence of the decrease in capital accumulation over the life-

cycle we find that the growth rate of output drops by 19 basis points. Aggregate labour supply

drops slightly because, although agents retire later, they supply less labour during their active

life-cycle. Also we can see that the main impact on labour supply comes from changes in the

labour supply of the asset-constrained agents. That is, while n̂ is nearly constant n changes

substantially. Finally, both the consumption-capital and wage-capital ratios remain roughly

constant.

In order to gain a better understanding of the different forces acting upon the individual

decisions we present a decomposition analysis in Table 4. In that table, columns (a) and (b)

present the general equilibrium outcomes with, respectively, perfect and imperfect annuities.

These outcomes coincide with columns (a) and (b) in Table 3. In Table 4(b) we consider the

pure partial equilibrium effect of the annuity market imperfection by keeping both z and γ

fixed (at their perfect annuities level) but setting θ = 0.7 and solving (T1.1)–(T1.3). In Table

4(c) we add the impact of the general equilibrium change in γ, whilst in Table 4(d) we add

the impact of the general equilibrium change in z.

In Table 4(b) we see that the pure partial equilibrium effect of an imperfect annuity market
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Figure 4: Optimal life-cycle plans with imperfect annuities
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Table 4: Decomposing the general equilibrium effects

(a) (b) (c) (d) (e)

PA (GE) IA (PE) IA (PE+γ) IA (PE+z) IA (GE)

C̃ (v, v)

w (v)
0.1044 0.1070 0.1007 0.1072 0.1009

Fb + 18 36.48 38.17 35.83 38.20 35.87

R + 18 65 74.14 66.49 73.22 66.25

is very substantial. Initial consumption is much higher than before and the asset constraint

binds for a longer period of time. Most dramatically, however, retirement now occurs much

later. Going to 4(c) reveals that the strong effects of the annuity market imperfection are

actually largely counteracted by the change in the economy-wide growth rate. That is, of

the 9 year increase in retirement due the annuity market imperfection only 1.5 are left if

proper account is taken of the change in the output growth rate. The entries in 4(d) show

that not taking into account the redistribution of annuity profits in itself already leads to

an overestimation of the impact on retirement of 10%. Finally, from 4(e) we learn that the

general equilibrium impact of annuity market imperfections on individual choices are much

less pronounced than a partial equilibrium impact would lead us to believe. This exercise

allows us to draw the conclusion that as much as a macroeconomics needs to be microfounded,

microeconomics needs to be macrofounded.

4.1 Sensitivity analysis

In this section we briefly reflect on the robustness of our analysis to alternative assumptions

concerning the size of the annuity market imperfection and the way that the profits of the

annuity firms are redistributed. As far as redistribution is concerned, we study what happens

if the profits are distributed with a skew toward either the young or the old. Alternatively, we

consider what happens if the profits are wasted by the government. Regarding the magnitude

of the imperfection, we consider what happens if the annuity market suffers from very heavy

imperfections by setting θ = 1
2 .
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In Table 3(c) and 3(d) we consider the impact of redistributing the profits of the annuity

firms to young agents (denoted by TY) and to old agents (TO), respectively.3 Although

the effects are mild, a clear pattern arises. If the profits are distributed with a skew to the

young we observe a positive growth impact while when the profits are distributed to the old

we observe a negative growth effect.

To understand these effects it is necessary to observe two facts. First, the middle-aged

and elderly contribute substantially more to the profits of the annuity firms because both

their asset holdings (A (v, v + u) /w (v)) and their instantaneous probability of death (µ (u))

are much higher. Second, apart from those that are asset constrained, young agents are

accumulators of capital whereas old agents are decumulators of capital. In concert, these two

facts assure that the TY scenario channels funds from the dissaving old to the saving young.

Hereby, the capital accumulation rate increases and, thus, output growth. In contrast, the TO

scenario channels funds in the opposite direction and, thereby, decreases the output growth

rate.

In line with the observations around (21) we find that the age until which the asset

constraint binds is increased slightly under the TY scenario whereas it is decreased somewhat

under the TO scenario. Effectively, by giving the transfers to the young agents they are

receiving additional funds which decreases the desire to step out of the borrowing constrained

regime. As before, giving the transfers to the old has the opposite effect.

In keeping with the analysis of the redistribution of profits we next analyze what happens

if the profits are used for wasteful expenditures (denoted by WE). In that case the aggregate

capital accumulation equation (T1.6) becomes:

k̇ (t)

k (t)
= γ = r − π +

[

n̂ −
ĉ (t)

w (t)

]

w (t)

k (t)
−

g (t)

k (t)
, (37)

where g (t) stands for government expenditures and is determined by the balanced-budget

requirement as:

g (t) = (1 − θ)

∫ D̄

Fb

e−(π+γ)s−M(s)µ (s)
A (v, v + s)

w (v)
ds. (38)

From the individual perspective, the WE scenario implies that the redistribution parameter

z is zero even if the annuity market is imperfect.

3We construct the two redistribution scenarios by setting φ in (14) equal to −1/D̄ for the TY scenario and

equal to 1/D̄ for the TO scenario.
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We study the effects of the WE scenario in Table 3(e). It is immediately clear both the

macroeconomic and microeconomic implications of annuity market imperfections are much

more pronounced. For instance, in comparison to the TA scenario the growth rate of output

now drops by 78 basis points instead of 19. Naturally, this is a direct consequence of the fact

that productive assets are now being drained from the economy. The growth effect is now so

large that agents will actually retire 7 years earlier instead of a year later. This larger effect

is best understood by focusing on Table 4. There we see that, in isolation, the retirement age

is negatively affected by θ and positively affected by γ. Faced with imperfect annuity markets

both θ and γ decrease so that the total impact on the retirement age is determined by the

balance of these two effects. If the profits of the annuity firms are redistributed, the impact of

θ on retirement is always larger than that of γ (see Table 3(b)-(d)). If, however, the proceeds

are wasted the impact of γ is larger than that of θ (see Table 3(e)). Similar reasoning can be

used to reconcile the impact on Fb.

As a final exercise, in Table 3(f) we study the impact of having an extremely imperfect

annuity market by setting θ = 1
2 . By and large this exercise, but also unreported simulations

for other values of θ, shows that the impact of the annuity market imperfections is monotonic.

That is, it is only the magnitude of the effects that changes, not the sign.

5 Conclusion

We study the impact of imperfect annuity markets on the individual life-cycle and macroeco-

nomic outcomes. On the individual level we find that imperfect annuities lead to a hump-

shaped consumption profile which brings the predictions of the model closer to the empiri-

cally observed consumption profiles (Alessie and de Ree, 2009; Gourinchas and Parker, 2002;

Fernández-Villaverde and Krueger, 2007). Regarding labour supply we find that agents retire

slightly later but supply less hours over their active career. The hump-shaped consumption

profile reduces the need for retirement savings and, thereby, decreases capital accumulation.

From an aggregate perspective the decrease in capital accumulation leads to a reduction in

economic growth. In addition, we find that the mode of redistributing the profits has impor-

tant implications at both the individual and the aggregate level. Finally, in terms of both sign

and magnitude, we find that a partial equilibrium analysis grossly overestimates the impact

of annuity market imperfections.
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The focus of the current paper has been on the development of a model that allows us

to study the implications of annuity market imperfections on both the individual life-cycle

and the macroeconomic environment. The model is, however, much more versatile than the

current paper would lead one to conclude. Indeed, in Heijdra and Mierau (2010, 2011) we

have used alternative versions of this model to study important public finance issues such as

the different impact of consumption and labour taxes and the moderating effect of a public

pension system in the wake of a mortality shock. In future work we will introduce an active

human-capital accumulation phase into the model and study the transitional dynamics of

various policy measures.
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